ÜbersichtAlle ProduktbereicheProduktbereichPassive BauelementeProduktgruppeHF-Bauteile & SignalübertragerProduktfamilieHF-InduktivitätenProduktserieWE-AC HC Hochstrom Luftspule

WE-AC HC Hochstrom Luftspule

WE-AC HC Hochstrom Luftspule
Bauform MaßeL
(mm)
W
(mm)
Fl
(mm)
1010 10 10 8.55
1212 11.5 12 9.1

Merkmale

  • Keine Sättigung
  • Keine Kernverluste
  • Extrem höhe Güte
  • Sehr niedriger RDC
  • Hohe Stromtragfähigkeit
  • Induktivitätswerte von 22 bis zu 146 nH
  • Betriebstemperatur: -40°C bis zu +125°C

Anwendung

  • DC-DC Konverter mit hohem Strom und Clocks > 4 MHz
  • HF-Leistungsverstärker
  • HF-Spannungsregler
  • Hochstrom HF-Filter/Abblockung
  • Stromversorgungen
  • Magnetisch empflindliche Anwendungen
  • Betriebstemperatur: -40°C bis zu +125°C

Modelithics-Simulationsmodelle

Integrieren Sie diesen Teil in Ihre Konstruktion mit den hochpräzisen messbasierten Simulationsmodellen von Modelithics. Die Modelithics-Bibliotheken sind auch für das Advanced Design System (ADS) von Keysight Technologies, die NI / AWR-Designumgebung / Microwave Office ™, Gensys, ASYSS® HFSS ™, Sonnet® und Cadence von Keysight Technologies verfügbar.

Artikeldaten

Alle
1010
1212
Artikel Nr. Daten­blatt Simu­lation Downloads StatusL
(nH)
Tol. LTestbedingung LQmin.
(%)
Testbedingung QRDC max.
(mΩ)
IR
(A)
fres
(MHz)
Muster
7449152022SPEC
11 Dateien Aktiv i| Produktion ist aktiv. Erwartete Lebenszeit: >10 Jahre. 22 ±20% 1 MHz 280 100 MHz 0.55 40 867
7449150023SPEC
11 Dateien Aktiv i| Produktion ist aktiv. Erwartete Lebenszeit: >10 Jahre. 23 ±20% 1 MHz 191 100 MHz 1.2 30 867
7449152042SPEC
11 Dateien Aktiv i| Produktion ist aktiv. Erwartete Lebenszeit: >10 Jahre. 42 ±20% 1 MHz 240 100 MHz 770 34 605
7449150046SPEC
11 Dateien Aktiv i| Produktion ist aktiv. Erwartete Lebenszeit: >10 Jahre. 46.5 ±20% 1 MHz 223 100 MHz 1.62 28 581
7449152066SPEC
11 Dateien Aktiv i| Produktion ist aktiv. Erwartete Lebenszeit: >10 Jahre. 66 ±20% 1 MHz 245 100 MHz 0.99 32 457
7449150079SPEC
11 Dateien Aktiv i| Produktion ist aktiv. Erwartete Lebenszeit: >10 Jahre. 79 ±20% 1 MHz 184 100 MHz 2.11 23 422
7449152090SPEC
11 Dateien Aktiv i| Produktion ist aktiv. Erwartete Lebenszeit: >10 Jahre. 90 ±20% 1 MHz 226 100 MHz 1.21 30 359
7449150111SPEC
11 Dateien Aktiv i| Produktion ist aktiv. Erwartete Lebenszeit: >10 Jahre. 111 ±20% 1 MHz 186 100 MHz 2.11 22 374
7449152111SPEC
11 Dateien Aktiv i| Produktion ist aktiv. Erwartete Lebenszeit: >10 Jahre. 117 ±20% 1 MHz 211 100 MHz 1.43 32 345
7449150146SPEC
11 Dateien Aktiv i| Produktion ist aktiv. Erwartete Lebenszeit: >10 Jahre. 146 ±20% 1 MHz 163 100 MHz 3.33 19 332
Artikel Nr. Daten­blatt Simu­lation
7449152022SPEC
7449150023SPEC
7449152042SPEC
7449150046SPEC
7449152066SPEC
7449150079SPEC
7449152090SPEC
7449150111SPEC
7449152111SPEC
7449150146SPEC
Muster
Artikel Nr. Daten­blatt Simu­lation Downloads StatusL
(nH)
Tol. LTestbedingung LQmin.
(%)
Testbedingung QRDC max.
(mΩ)
IR
(A)
fres
(MHz)
Muster

Würth Elektronik bietet mehrere Produktserien mit unterschiedlicher Aufbautechnologie an

HF Induktivitäten Auswahlhilfe

WE-KI Keramik-SMT-Induktivität
WE-KI SMT Keramik-SMT-Induktivität
  • Induktivitätswerte von 1 nH bis zu 1800 nH
  • Hohe Güte Q
  • Bis zu 12,5 GHz Eigenresonanzfrequenz
  • Bis zu ± 2% Induktivitätstoleranz
  • Hohe thermische Stabilität
  • Design Kits für die verschiedenen Größen erhältlich
WE-KI HC Hochstrom Keramik-SMT-Induktivität
WE-KI HC Hochstrom-Keramik-SMT-Induktivität
  • Induktivitätswerte von 1 nH bis zu 390 nH
  • Ausgezeichneter Q-Faktor
  • Hochstrom bis zu 2,3 A
  • ± 2% Induktivitätstoleranz
  • Hohe thermische Stabilität
  • Design Kit verfügbar
WE-MK Multilayer-Keramik-SMT-Induktivität
WE-MK Multilayer-Keramik-SMT-Induktivität
  • Induktivitätswerte von 1 nH bis zu 470 nH
  • Extrem kleine Bauform (bis zu 0201)
  • Bis zu ±2% (oder ±0,1 nH) Induktivitätstoleranz
  • Robuste Struktur
  • Polaritätskennzeichnung verfügbar 
  • Design Kits für die verschiedenen Größen erhältlich
  • Hohe thermische Stabilität
WE-CAIR Luftspulen
WE-CAIR Luftspulen
  • Induktivitätswerte von 1.65 nH bis zu 538 nH
  • Extrem hohe Güte Q
  • Hochstrom bis zu 4 A
  • Hohe Eingenresonanzfrequenz 
  • Polaritätskennzeichnung verfügbar 
  • Design Kits für die verschiedenen Größen erhältlich
  • Hohe thermische Stabilität
WE-TCI SMD-Dünnfilm-Induktivität
WE-TCI SMD-Dünnfilm-Induktivität
  • Induktivitätswerte von 1 nH bis zu 27 nH
  • Hohe Eigenresonanzfrequenz
  • Enge Toleranz von 2% (1% auf Anfrage) oder ± 0,1
  • Sehr geringe Größe (bis zu 0201)
WE-RFI Ferrit-SMT-Induktivität
WE-RFI Ferrit-SMT-Induktivität
  • Hohe Induktivitätswerte von 20 nH bis zu 47 µH verfügbar
  • Betriebstemperatur: -40 °C bis +85 °C
  • Größen: 0402 bis 1008
  • Design Kit verfügbar

Was ist der Gütefaktor Q?

Was ist der Gütefaktor Q?

Der Gütefaktor Q ist ein entscheidender Parameter und eines der ersten Kriterien, die jeder HF-Ingenieur berücksichtigen sollte. Der Q-Faktor wird entweder als Mindestwert oder als typischer Wert bei einem bestimmten Frequenzpunkt angegeben. Bei Würth Elektronik wird der Q-Faktor als Mindestwert angegeben, um den Kunden ein zuverlässiges Mindestniveau zu garantieren.

Grundsätzlich ist der Q-Faktor das Verhältnis zwischen dem induktiven Blindwiderstand XL und den Verlusten RS und ist ein Indikator dafür, wie ideal eine Induktivität ist. Bei Induktivitäten mit Luft- oder Keramikkernen ist der Widerstand RS hauptsächlich auf den spezifischen Widerstand des Leiters in der Induktionsvorrichtung zurückzuführen. Ein höherer Q-Faktor bedeutet weniger Verluste in der Komponente.

RF Inductors Factor Frequency

Eigenresonanzfrequenz

Eigenresonanzfrequenz

Da die Wicklungsstruktur jeder Drahtspule eine gewisse Kapazität aufweist, stellt die Induktivität einen Parallelschwingkreis dar, der eine entsprechende Eigenresonanzfrequenz (SRF, self resonance frequency) aufweist. Wie bei herkömmlichen Induktivitäten gibt die SRF an, bis zu welcher Frequenz sich das Bauelement wie eine Induktivität verhält.

Genau bei der SRF verhält sich die Induktivität mit ihrer parasitären Kapazität wie ein Resonanzkreis mit einer nahezu unendlich hohen Impedanz, nur Schaltungsverluste begrenzen den hohen Wert der Impedanz. Jenseits der SRF verhält sich das Bauelement wie ein Kondensator.

Bei EMV-Filterapplikationen, in denen Induktivitäten verwendet werden, erfolgt die beste Signaldämpfung kurz unterhalb der SRF, wo die Impedanz sehr hoch ist und somit die Dämpfung ihr Maximum erreicht.

Bei Signal-Filter- oder Impedanzanpassungs-Anwendungen ist es wichtiger, eine konstante Induktivität im relevanten Frequenzbereich zu haben, was bedeutet, dass die SRF der Induktivität weit oberhalb der Betriebsfrequenz der Schaltung liegen sollte.

RF Inductors Eigenfrequenzresonanz

Nennstrom bei Hochfrequenzanwendungen

Nennstrom bei Hochfrequenzanwendungen

Der Nennstrom wird als maximaler Gleichstrom (A oder mA) angegeben, der einen bestimmten Temperaturanstieg verursacht (z.B. ΔT = 40 K). Der Temperaturanstieg plus die Umgebungstemperatur darf die maximale Betriebstemperatur nicht überschreiten. Für Hochstromanwendungen wählen Sie bitte die spezifischen Luftspulen: WE-KI HC, WE-ACHC und WE-CAIR.

RF Inductors Nennstrom bei Hochfrequenzanwendungen

HF-Induktivitäten und Antennenanpassung

Wie die Antennenanpassung funktioniert

HF-Induktivitäten und Antennenanpassung

Wie die Antennenanpassung funktioniert

Mit Hilfe des Smith-Diagramms kann die komplexe Impedanz des Antennenspeisepunkts, bestehend aus Widerstands- und Blindwerten, grafisch dargestellt werden. Bei einer angepassten Antenne liegt die Impedanz bei der Betriebsfrequenz nahe der Mitte des Smith-Diagramms und damit nahe der Impedanz von 50 Ω. Dies kann durch den Einsatz von HF-Induktivitäten und HF-Kondensatoren erreicht werden. Ein pi-Anpassungsnetzwerk ist für diesen Zweck besonders nützlich, da es flexibel für die Antennenanpassung von fast jeder anderen Impedanz verwendet werden kann. In der Praxis funktioniert die Antennenanpassung in mehreren Schritten.

Zusätzlich zu den WE-MCA Antennen bieten wir unseren Kunden einen entwicklungsbegleitenden Antennenservice an. Wir unterstützen von der Antennenauswahl über die Antennenplatzierung bis hin zur Antennenanpassung.

Webseite: www.we-online.com/antenna-matching

E-Mail: antenna.matching@we-online.com

Wir bieten auch ein Antennenanpassungs-Design-Kit an, das alle Komponenten enthält, die für Ihre Antennenanpassung benötigt werden. Dieses Design-Kit mit der Bestellnummer 748001 enthält Chip-Antennen WE-MCA, keramische Multilayer-Induktivitäten WE-MK in der Größe 0402, Hochfrequenz-Chipkondensatoren WCAP-CSRF in der Größe 0402 und HF-Koaxialkabel WR-CXARY für Frequenzen bis zu 18 GHz.

RF Inductors HF-Induktivitäten und Antennenanpassung