Class-D Audio Verstärker

Stromversorgung

Das Netzteil spielt bei Class-D-Verstärkern eine besondere Rolle, da jeder Spannungsrippel dem Ausgangssignal überlagert wird. Daher muss beim Design auf eine gute Power Integrity geachtet werden. Bei hohen Ausgangsleistungen unterstützen Snap-In-Kondensatoren im Zwischenkreis die Stabilität der Versorgungsspannung.

PWM Controller

Der PWM-Controller besteht aus einem Komparator, dessen Eingänge mit einer Dreieckspannung und dem Audiosignal beschaltet sind.Am Ausgang des Komparators liegt somit eine Rechteckfunktion an, deren Pulsbreite dem momentanen Amplitudenwert des Audiosignals entspricht. Dieses digitale Signal steuert über entsprechende Treiber die Leistungstransistoren.Wie jeder IC benötigt auch der PWM-Controller eine gewisse Peripherie, um zu funktionieren.

Steckverbinder

Class-D Audio Induktivitäten

Unsere Flachdrahtinduktivitäten sind für den Einsatz in hochwertigen Class-D Audioanwendungen konzipiert. Die Bauteile wurden in realen Anwendungen getestet und optimiert, um Verzerrungen und Rauschen (THD+N) zu reduzieren und die Leerlaufverluste deutlich zu verringern.

Class-D Audio Induktivitäten

Unsere Flachdrahtinduktivitäten sind für den Einsatz in hochwertigen Class-D Audioanwendungen konzipiert. Die Bauteile wurden in realen Anwendungen getestet und optimiert, um Verzerrungen und Rauschen (THD+N) zu reduzieren und die Leerlaufverluste deutlich zu verringern.

Filter Kondensatoren

Die Kondensatoren sind als Filterbestandteil ebenfalls ausschlaggebend für eine geringe Verzerrung. Aufgrund der Bauform und hohen Verfügbarkeit haben sich MLCCs für die meistens Anwendungen durchgesetzt. Bei deren Dimensionierung ist auf den DC-Bias Effekt zu achten. Auch Polymer-Elektrolytkondensatoren sind geeignet, sie bieten größere Kapazitäten und geringere parasitäre Eigenschaften. Folienkondensatoren mit Polypropylenfolien zeichnen sich durch einen sehr stabilen Kapazitätswert aus, sind allerdings bei gegebener Kapazität deutlich größer als andere Technologien.

Filter Kondensatoren

Die Kondensatoren sind als Filterbestandteil ebenfalls ausschlaggebend für eine geringe Verzerrung. Aufgrund der Bauform und hohen Verfügbarkeit haben sich MLCCs für die meistens Anwendungen durchgesetzt. Bei deren Dimensionierung ist auf den DC-Bias Effekt zu achten. Auch Polymer-Elektrolytkondensatoren sind geeignet, sie bieten größere Kapazitäten und geringere parasitäre Eigenschaften. Folienkondensatoren mit Polypropylenfolien zeichnen sich durch einen sehr stabilen Kapazitätswert aus, sind allerdings bei gegebener Kapazität deutlich größer als andere Technologien.

image/svg+xml Tabelle.1112 Tabelle.1147 Tabelle.1106 Tabelle.1101 Tabelle.1102 Tabelle.1103 Tabelle.1104 Tabelle.1000 Controller Tabelle.1002 Tabelle.1003 Knotenpunkt.92 Tabelle.1005 Knotenpunkt.1006 Tabelle.1007 P-Kanal E-MOSFET.1008 Tabelle.1009 Dreieck.1195 Tabelle.1011 Tabelle.1012 Tabelle.1013 Tabelle.1014 Tabelle.1015 Tabelle.1016 Tabelle.1017 Tabelle.1018 P-Kanal E-MOSFET.1019 Tabelle.1020 Dreieck.1195 Tabelle.1022 Tabelle.1023 Tabelle.1024 Tabelle.1025 Tabelle.1026 Tabelle.1027 Tabelle.1028 Tabelle.1029 Knotenpunkt.1030 Tabelle.1031 P-Kanal E-MOSFET.1032 Tabelle.1033 Dreieck.1195 Tabelle.1035 Tabelle.1036 Tabelle.1037 Tabelle.1038 Tabelle.1039 Tabelle.1040 Tabelle.1041 Tabelle.1042 P-Kanal E-MOSFET.1043 Tabelle.1044 Dreieck.1195 Tabelle.1046 Tabelle.1047 Tabelle.1048 Tabelle.1049 Tabelle.1050 Tabelle.1051 Tabelle.1052 Tabelle.1053 Knotenpunkt.1054 Tabelle.1055 Spule.1056 Tabelle.1057 Tabelle.1058 Tabelle.1059 Tabelle.1060 Tabelle.1061 Kern mit Luftspalt.1062 Canvas Tabelle.1064 Tabelle.1065 Tabelle.1066 Wicklungsanfang.1067 Canvas Tabelle.1069 Tabelle.1070 Spule.1072 Tabelle.1073 Tabelle.1074 Tabelle.1075 Tabelle.1076 Tabelle.1077 Kern mit Luftspalt.1078 Canvas Tabelle.1080 Tabelle.1081 Tabelle.1082 Wicklungsanfang.1083 Canvas Tabelle.1085 Tabelle.1086 Knotenpunkt.1087 Tabelle.1088 Knotenpunkt.1089 Tabelle.1090 Kondensator.1091 Tabelle.1092 Tabelle.1093 Tabelle.1094 Tabelle.1095 Kondensator.1096 Tabelle.1097 Tabelle.1098 Tabelle.1099 Tabelle.1100 Tabelle.1105 Knotenpunkt.1107 Tabelle.1108 Knotenpunkt.1109 Tabelle.1110 Tabelle.1111 Tabelle.1113 Tabelle.1120 Power Supply Tabelle.1121 Tabelle.1122 Tabelle.1123 Tabelle.1124 Tabelle.1125 Tabelle.1126 Tabelle.1127 Tabelle.1128 Tabelle.1129 Tabelle.1130 Tabelle.1131 Tabelle.1132 Tabelle.1133 Tabelle.1136 Tabelle.1137 Tabelle.1138 Tabelle.1139 Tabelle.1140 Knotenpunkt.1141 Tabelle.1142 Tabelle.1143 Tabelle.1144 Knotenpunkt.1145 Tabelle.1146 Tabelle.1148 Tabelle.1149 Tabelle.1150 Tabelle.1152 Tabelle.1153 Tabelle.1071 Connector Tabelle.1119 Tabelle.1001

Grundlagen eines Class-D Audio Verstärkers

Bei Class-D Verstärkern wird nicht das analoge Audiosignal selbst verstärkt, sondern eine mit dem Audiosignal pulsweitenmodulierte hochfrequente Sinusschwingung einer Schaltstufe (= digitaler Verstärker) zugeführt und anschließend der niederfrequente Anteil des verstärkten Signals über einen Tiefpass herausgefiltert.

Ein Class-D Verstärker ist also nichts anderes als die Kombination eines Pulsweitenmodulators (PWM) mit einer digitalen Leistungsstufe und einem nachgeschalteten Tiefpassfilter. Das Blockschaltbild zeigt die Elemente eines Class-D Verstärkers in Vollbrückentopologie.