Single Pair Power over Ethernet

DC-Filter (only PSE)

The System is powered from an external power supply at the Power Sourcing Equipment. To avoid noise coupling to and from the Power Supply, a DC Filter including overvoltage protection is necessary.

A tried and tested filter design for the DC input can be found in our reference design RD041.

DC/DC Converter

In contrast to traditional Ethernet which requires electrical isolation of network segments from each device, PoDL and SPoE devices only need to provide 1MΩ of isolation to all accessible external conductors when measured at 5V. I.e. for most devices, the isolation requirement are met by using a non-conductive chassis.

By definition, the power supply system is not galvanically isolated. If galvanic isolation is necessary due to the application, this must be ensured by the external 24 V supply.

Operating voltage may only be applied to the signal lines, when a Powered Device is present. Therefore, a PSE Power Controller is necessary to operate the dc/dc converter accordingly.

A more in depth assessment can be found in our Reference Design RD041.

Differential Mode Choke

This Choke provides a high impedance for the noise from the DC/DC converter and also blocks the differential signal current to the power path.

Since the choke is pre-magnetized by the supply current, a coupled inductor with an appropriate saturation current is suggested.

Line Filter

These line filter chokes are additional inductors to decouple the power supply from the system to increase the signal to noise ratio of the Ethernet signal. They also reduce emissions from the DC/DC-converter to the signal line.

Line Filter

These line filter chokes are additional inductors to decouple the power supply from the system to increase the signal to noise ratio of the Ethernet signal. They also reduce emissions from the DC/DC-converter to the signal line.

Overvoltage Protection of the Power Supply

Transient protection is important for this interface due to the possible length of the transmission line. This design includes a three-stage limitation of transient overvoltage for effective protection of the semiconductors.

This stage consists of bidirectional TVSP diodes connected to earth to limit common mode voltages at 58 V. Steering Diodes connected in series lower the total capacitive load on the signal.

Connencting GND to Shield/ Chassis

Depending on the housing and grounding system, the system can be adapted in terms of EMC behavior using different component variants.

Reference Design RD041 includes a more detailed view on the topic

Differential Mode Choke

The CMC reduces noise coming from the cable side (e.g. transients) and reduces any high-frequency interference generated by the PHY and power supply system in the direction to the cable. The choke should have a low leakage inductance so as not to impair the signal too much.

Cable Side Overvoltage Protection

Transient protection is important for this interface due to the possible length of the transmission line. This design includes a three-stage limitation of transient overvoltage for effective protection of the semiconductors.

The second stage is a TVS diode with steering diodes to reduce the total capacitive load. This circuit clamps at approximately 58 V, in case differential mode transient overvoltage occurs between the signal wires.

SPE-Connector

IEC 63171-6 defines a standard connector for Single pair Ethernet. For lower transmission rates in cost sensitive applications, a 3-pin terminal is also functional.

Discharge Circuit

The Varistor reduces any residual charges in the cable or on the capacitors when the system is not in operation, or the cable is removed from the interface. If the board is installed in a plastic housing, there is no stable ground reference for a low-impedant diverting path, so the Varistor and the neighboring capacitors can be replaced by a simple resistor.

Gas-Plasma Arrester

Transient protection is important for this interface due to the possible length of the transmission line. This design includes a three-stage limitation of transient overvoltage for effective protection of the semiconductors.

The first stage is realized with a symmetrical gas-plasma arrester. The arrester limits the transient voltage between the signal wires and earth from approximately 350 V and thus absorbs most of the energy of the pulse in common mode.

Center Tab Termination

This circuit of capacitors and a resistor ensures termination of the signal line with an impedance of 100 Ω. It also ensures balancing in the event of any imbalance in the signal voltage.

DC Blocking Capacitor

To prevent direct current from the applied supply voltage of +24 V through the transformer,  capacitors between the terminals of the center tap is used as a DC-Block. Connecting two capacitors in parallel upholds that feature while decreasing the influence on the signal.

Signal Transformer

The transformer must be selected to meet the droop, return loss, and mode conversion specifications according to IEEE 802.3cg. Our WE-STST transformer series combines excellent performance regarding return loss and mode conversion loss with a very compact size.

MLCC

This Capacitor increases common mode rejection by balancing the center tap of the transformer.

PHY Side Overvoltage Protection

On the PHY-side of the signal transformer as TVS Diode array protects the signal pins of the PHY in the event of transient common mode voltages of > 4.5V.

Crystal

Keep the XTAL as close as possible to the IC. Where applicable connect the XTAL housing to GND. A via fence reduces coupling to the GND plane. An oscillator can be used alternatively.

Controller

For SPoE to work properly special Controllers are needed on either side of the Network. Both Power Sourcing Equipment (PSE) and Powered Device (PD) need a Physical Interface Controller (PHY) and a Power Controller respectively. For the PSE an additional microcontroller is used to coordinate the system. For the PD, the microcontroller can by omitted, depending on the application.

In either case, these integrated circuits require peripheral components such as programming connectors and blocking capacitors. Our reference design RD041 offers a detailed view on the required circuitry

Tabelle.1519 Tabelle.1520 Tabelle.1516 Tabelle.1512 Tabelle.1513 Tabelle.1495 Tabelle.1401 Tabelle.1402 Tabelle.1400 Tabelle.1304 Tabelle.1305 Tabelle.1396 Tabelle.1395 Tabelle.1391 Tabelle.1392 Tabelle.1363 Tabelle.1334 Tabelle.1335 Tabelle.1332 Tabelle.1333 Tabelle.1159 Tabelle.1158 Tabelle.1294 Tabelle.1295 Tabelle.1267 Tabelle.1268 Tabelle.1269 Tabelle.1270 Tabelle.1121 Tabelle.1122 Tabelle.1123 Masse.295 Tabelle.296 Tabelle.297 Tabelle.1093 Tabelle.1094 Tabelle.195 Tabelle.197 Tabelle.290 Tabelle.291 Tabelle.292 Tabelle.293 Tabelle.294 Quarz Tabelle.268 Tabelle.269 Tabelle.270 Tabelle.271 Tabelle.272 Tabelle.273 Kondensator.173 Tabelle.275 Tabelle.276 Tabelle.277 Tabelle.278 Kondensator.178 Tabelle.280 Tabelle.281 Tabelle.282 Tabelle.283 Knotenpunkt.284 Tabelle.285 Knotenpunkt.189 Tabelle.287 Knotenpunkt.191 Tabelle.289 Tabelle.325 Tabelle.1 PHY Tabelle.2 TRX+ Tabelle.37 TRX- TVS-Array 2+1 A Diode klein Tabelle.1003 Tabelle.1004 Tabelle.1005 Tabelle.1006 Tabelle.1007 Diode klein.209 Tabelle.1009 Tabelle.1010 Tabelle.1011 Tabelle.1012 Tabelle.1013 Knotenpunkt Diode klein.222 Tabelle.1016 Tabelle.1017 Tabelle.1018 Tabelle.1019 Tabelle.1020 Diode klein.228 Tabelle.1022 Tabelle.1023 Tabelle.1024 Tabelle.1025 Tabelle.1026 Knotenpunkt.234 Knotenpunkt.235 Knotenpunkt.236 Tabelle.1030 Tabelle.1031 Tabelle.1032 Tabelle.1033 Tabelle.1034 Tabelle.1035 Tabelle.1036 Tabelle.1037 Tabelle.1038 Tabelle.1039 TVS-Diode uni klein Tabelle.1041 Tabelle.1042 Tabelle.1043 Tabelle.1044 Tabelle.1045 Tabelle.1054 Spule kurz.1046 Tabelle.1047 Tabelle.1048 Tabelle.1049 Tabelle.1053 Tabelle.1055 Spule kurz.1046 Tabelle.1057 Tabelle.1058 Tabelle.1059 Tabelle.1060 Tabelle.1061 Spule kurz.1046 Tabelle.1063 Tabelle.1064 Tabelle.1065 Tabelle.1066 Tabelle.1067 Spule kurz.1046 Tabelle.1069 Tabelle.1070 Tabelle.1071 Tabelle.1072 Wicklungsanfang.1073 Canvas Tabelle.1075 Tabelle.1076 Wicklungsanfang.1077 Canvas Tabelle.1079 Tabelle.1080 Wicklungsanfang.1081 Canvas Tabelle.1083 Tabelle.1084 Wicklungsanfang.1085 Canvas Tabelle.1087 Tabelle.1088 Knotenpunkt.1089 Tabelle.1090 Knotenpunkt.1091 Tabelle.1092 Kern.1095 Canvas Tabelle.1097 Tabelle.1098 Kern.1099 Canvas Tabelle.1101 Tabelle.1102 Kern.1103 Canvas Tabelle.1105 Tabelle.1106 Kern.1107 Canvas Tabelle.1109 Tabelle.1110 Knotenpunkt.1113 Tabelle.1114 Kondensator.250 Tabelle.1116 Tabelle.1117 Tabelle.1118 Tabelle.1119 Masse.1124 Tabelle.1125 Tabelle.1126 CMC skalierbar.1127 Spule.124 Canvas Tabelle.1130 Tabelle.1131 Tabelle.1132 Tabelle.1133 Tabelle.1134 Tabelle.1135 Spule.697 Canvas Tabelle.1138 Tabelle.1139 Tabelle.1140 Tabelle.1141 Tabelle.1142 Tabelle.1143 Kern.75 Canvas Tabelle.1146 Tabelle.1147 Kern.709 Canvas Tabelle.1150 Tabelle.1151 Kern Verbinder.77 CMC Tabelle.1154 Tabelle.1155 Tabelle.1156 Tabelle.1157 Kondensator.1164 Tabelle.1165 Tabelle.1166 Tabelle.1167 Tabelle.1168 Knotenpunkt.1170 Tabelle.1171 Knotenpunkt.1172 Tabelle.1173 Spule.1174 Tabelle.1175 Tabelle.1176 Tabelle.1177 Tabelle.1178 Tabelle.1179 Kern mit Luftspalt.1186 Canvas Tabelle.1188 Tabelle.1189 Tabelle.1190 Wicklungsanfang.1196 Canvas Tabelle.1198 Tabelle.1199 Spule.1204 Tabelle.1205 Tabelle.1206 Tabelle.1207 Tabelle.1208 Tabelle.1209 Spule.1210 Tabelle.1211 Tabelle.1212 Tabelle.1213 Tabelle.1214 Tabelle.1215 Kern mit Luftspalt.1216 Canvas Tabelle.1218 Tabelle.1219 Tabelle.1220 Kern mit Luftspalt.1221 Canvas Tabelle.1223 Tabelle.1224 Tabelle.1225 Wicklungsanfang.1226 Canvas Tabelle.1228 Tabelle.1229 Wicklungsanfang.1230 Canvas Tabelle.1232 Tabelle.1233 CMC Tabelle.1236 Tabelle.1242 Tabelle.1243 DC/DC Spule.1250 Tabelle.1251 Tabelle.1252 Tabelle.1253 Tabelle.1254 Tabelle.1255 Kern mit Luftspalt.1256 Canvas Tabelle.1258 Tabelle.1259 Tabelle.1260 Wicklungsanfang.1261 Canvas Tabelle.1263 Tabelle.1264 TVS Bi-Directional.1275 Tabelle.1276 Tabelle.1277 Tabelle.1278 Tabelle.1279 Tabelle.1280 Tabelle.1281 Tabelle.1282 TVS Bi-Directional.1283 Tabelle.1284 Tabelle.1285 Tabelle.1286 Tabelle.1287 Tabelle.1288 Tabelle.1289 Tabelle.1290 Gehäuse.1291 Tabelle.1292 Tabelle.1293 Knotenpunkt.1298 Tabelle.1299 Knotenpunkt.1300 Tabelle.1301 Knotenpunkt.1302 Tabelle.1303 TVS Bi-Directional.1308 Tabelle.1309 Tabelle.1310 Tabelle.1311 Tabelle.1312 Tabelle.1313 Tabelle.1314 Tabelle.1315 Knotenpunkt.1316 Tabelle.1317 Knotenpunkt.1318 Tabelle.1319 Gasableiter 3polig.1322 Tabelle.1323 Tabelle.1324 Tabelle.1325 Tabelle.1326 Tabelle.1327 Tabelle.1328 Gehäuse.1329 Tabelle.1330 Tabelle.1331 Knotenpunkt.1336 Tabelle.1337 Knotenpunkt.1338 Tabelle.1339 Tabelle.1340 Tabelle.1341 Tabelle.1342 Tabelle.1343 Tabelle.1344 Connector Kondensator.1345 Tabelle.1346 Tabelle.1347 Tabelle.1348 Tabelle.1349 Widerstand.1350 Tabelle.1351 Tabelle.1352 Tabelle.1353 Tabelle.1354 Masse.1360 Tabelle.1361 Tabelle.1362 Knotenpunkt.1364 Tabelle.1365 Knotenpunkt.1366 Tabelle.1367 Kondensator.1370 Tabelle.1371 Tabelle.1372 Tabelle.1373 Tabelle.1374 Varistor / Suppressor.1375 Tabelle.1376 Widerstand.107 Tabelle.1378 Tabelle.1379 Tabelle.1380 Tabelle.1381 Gehäuse.1382 Tabelle.1383 Tabelle.1384 Gehäuse.1385 Tabelle.1386 Tabelle.1387 Tabelle.1397 Tabelle.1398 Controller Kern Verbinder.1497 CMC Tabelle.1499 Tabelle.1500 Gehäuse.1501 Tabelle.1502 Tabelle.1503 Masse.1504 Tabelle.1505 Tabelle.1506 Widerstand.1507 Tabelle.1508 Tabelle.1509 Tabelle.1510 Tabelle.1511 Tabelle.1514 Tabelle.1515 DC Filter (SPE Only) Tabelle.1530 Tabelle.1531 Tabelle.1532 Tabelle.1533 Tabelle.1534 Tabelle.1535 Tabelle.1536 Tabelle.1537 Tabelle.1538 Tabelle.1539 Tabelle.1540 Tabelle.1541 Tabelle.1542 Tabelle.1527 Tabelle.1528 Tabelle.1529 Tabelle.1521 Tabelle.1522 Tabelle.1523 Tabelle.1524 Tabelle.1525 Tabelle.1526

Single Pair Power over Ethernet

Single Pair Ethernet (SPE) is an IP-based bus system designed for industrial applications. By coupling a power supply into the system, the range of use cases is greatly expanded. For Industrial use, this is called „Single Pair Power over Ethernet“ (SPoE) while the name „Power over Data Line“ (PoDL) is more prominent in the automotive sector.

The System consists of a Power Sourcing Equipment (PSE) supplying power onto the bus and a Powered Device (PD) drawing current from the bus. From an EMC point of view the two devices behave similarly, so the filter and protection circuitry is essentially the same. The basic schematic shown here is therefore valid for both PSE and PD, if not stated otherwise in the specific part description.

A more detailed explanation of the design choices can be found inside our Reference Design RD041 and the associated Application Note.

Würth Elektronik is a member of the SPE Industrial Partner Network

The network is an equal association of companies that promote Single Pair Ethernet technology as the basis for rapid and successful growth of the IIoT (Industrial Ethernet of Things).

Go to network