Auf dieser Seite finden Sie Informationen und Bildmaterial für Ihre journalistische Berichterstattung.
Bei Fragen richten Sie sich gerne jederzeit auch persönlich an uns. Hier finden Sie unsere Pressekontakte.
Würth Elektronik veröffentlicht AppNote zu SEPIC
In der Application Note ANP135 „Der SEPIC mit gekoppelten und entkoppelten Speicherdrosseln“ adressiert Würth Elektronik den Betrieb eines Single-Ended-Primary-Inductor-Converters im kontinuierlichen und diskontinuierlichen Modus (CCM - continuous conduction mode und DCM - discontinuous conduction mode). Das 28-seitige Dokument thematisiert darüber hinaus Designüberlegungen und Richtlinien mit Schwerpunkt auf Induktivitäten.
Der SEPIC (Single-Ended-Primary-Inductor-Converter) ist eine nicht isolierte Schaltnetzteiltopologie, die eine Ausgangsspannung erzeugt, die höher, gleich oder niedriger als die Eingangsspannung sein kann. Typische Anwendungen sind akkubetriebene Produkte und Ladegeräte, automobile Energiesysteme, Photovoltaikwechselrichter, Offline-LED-Beleuchtung sowie Leistungsfaktorkorrekturstufen. Die AppNote bietet eine detaillierte Betrachtung des SEPIC-Wandlers mit Schwerpunkt auf Induktivitäten. Besonderes Augenmerk legt Würth Elektronik auf die Implementierung mit einer gekoppelten Induktivität, wie zum Beispiel WE-MCRI, einschließlich der Analyse der Ripplestromsteuerung und der Schlüsselrolle der Streuinduktivität für die Wandlerleistung. Unterstützt wird die Analyse durch SPICE-Simulationen und Messungen an einem realen DC-DC-SEPIC-Wandler-Prototyp.
Gekoppelt oder ungekoppelt
Im Gegensatz zu Topologien mit nur einer Induktivität, wie Buck, Boost oder Buck-Boost, benötigt die Leistungsstufe des SEPIC zwei Induktivitäten. Diese können als ungekoppelte, gesonderte Induktivitäten implementiert oder alternativ mit zwei Wicklungen auf einem gemeinsamen Kern als gekoppelte Leistungsinduktivität aufgebaut werden. Dieser Aufbau reduziert nicht nur die Anzahl an Komponenten, sondern erfordert auch eine geringere Induktivität, um die gleiche Ripplestromamplitude zu erzeugen, verglichen mit einer Lösung mit ungekoppelten Induktivitäten. Darüber hinaus ermöglicht die magnetische Kopplung der Wicklungen die Implementierung von „Ripple Current Steering“. Dabei handelt es sich um eine Technik, bei der der Ripplestrom der Eingangswicklung auf die Ausgangswicklung „gesteuert“ wird, was das leitungsgebundene EMI-Rauschen reduziert. „Es ist wichtig, die Auswirkungen der Streuinduktivität auf die Leistung eines SEPIC mit gekoppelten Induktivitäten zu verstehen. Hier kann eine höhere Streuinduktivität im Gegensatz zu den üblichen Fällen tatsächlich von Vorteil sein“, erklärt Eleazar Falco, Senior Application Engineer bei Würth Elektronik eiSos und Autor.
Sie haben Fragen, Anmerkungen oder Wünsche zu unserer Pressearbeit?
Würth Elektronik EMV & Inductive Solutions
Sarah Hurst
Phone: +49 7942 945-5186
E-Mail: sarah.hurst@we-online.com
Würth Elektronik Circuit Board Technology
Melanie Wöhrle
Phone: +49 7940 946-5932
E-Mail: melanie.woehrle@we-online.com
Würth Elektronik Intelligent Power & Control Systems
Sandra Herter
Phone: +49 7940 9810-1503
E-Mail: sandra.herter@we-online.com
Hier stehen Ihnen Informationen und Bilder der Unternehmensbereiche zum Download zur Verfügung
Fachbücher, Fachberichte und weiteres Informationsmaterial
Würth Elektronik Blog
Erfahren Sie in unserem Blog mehr über Elektronikdesign, neue Technologien und aktuelle Innovationen.