Keypads

Overlap polymer to copper P-Cu ≥ 0.15 mm
Distance to other electrical potential P-P ≥ 0.5 mm
Solder mask clearance P-LSL ≥ 0.25 mm
Distance between carbon and dielectric P-D ≥ 0.15 mm
Dielectric width D ≥ 0.3 mm
Copper thickness (total) ≤ 50 µm
Contact resistance ≤ 20 Ω

Switches

Overlap polymer to copper P-Cu ≥ 0.15 mm
Distance to other electrical potential P-P ≥ 0.5 mm
Solder mask clearance P-LSL ≥ 0.25 mm
Distance between carbon and dielectric P-D ≥ 0.15 mm
Dielectric width D ≥ 0.3 mm
Copper thickness (total) ≤ 50 µm
Contact resistance ≤ 20 Ω

Basics

- The print is used as a passivation of the copper to prevent from oxidization and to achieve a constant contact resistance during the lifetime.
- The contact resistance is influenced by the contact material and the contact pressure and is normally < 20 Ω.
- Two areas with a different electrical potential are shorted by conductive rubber mats or metal contact springs.
- Switches are used with sliding contacts; two contact areas of different electrical potentials are shorted by the slider.
Resistors Outer Layers

- Resistor length \(L \) \(\geq 2 \text{ mm} \)
- Resistor width \(B \) \(\geq 1.5 \text{ mm} \)
- Overlap silver to copper \(\text{Ag-Cu} \) \(\geq 0.25 \text{ mm} \)
- Overlap resistor to silver \(\text{P-Ag} \) \(\geq 0.15 \text{ mm} \)
- Solder mask clearance \(\text{P-LSL} \) \(\geq 0.25 \text{ mm} \)
- Overlap polymer to copper \(\text{P-Cu} \) \(\geq 0.15 \text{ mm} \)
- Copper thickness (total) \(\leq 50 \text{ µm} \)
- Distance to other electrical potential \(\geq 0.5 \text{ mm} \)
- Resistor values \(100 \text{ Ω} – 750 \text{ kΩ} \)
- Resistor tolerance \(+/- 30 \% \)
- Dissipation at environmental temperature: \(\leq 40^\circ\text{C} \) \(\leq 50 \text{ mW/mm}^2 \)

* +/-5 % with laser trimming

Basics
- Printed resistors are built by printing a polymer ink with a specific conductivity between to copper pads.
- The thickness of the resistors is 20 µm in standard.
- With an adjustment of the resistors by laser trimming a lower tolerance can be reached.
Special Applications

Potentiometer

Heating Resistor

Surface Finishing

<table>
<thead>
<tr>
<th>Application</th>
<th>HAL</th>
<th>HAL lead-free</th>
<th>ENIG</th>
<th>Immersion Tin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keypad</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>—</td>
</tr>
<tr>
<td>Switches</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>—</td>
</tr>
<tr>
<td>Resistor on outer layer</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>—</td>
</tr>
<tr>
<td>Resistor on inner layer</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>—</td>
</tr>
<tr>
<td>Potentiometer</td>
<td>—</td>
<td>—</td>
<td>■</td>
<td>—</td>
</tr>
<tr>
<td>Heating resistor on outer layer</td>
<td>—</td>
<td>—</td>
<td>■</td>
<td>—</td>
</tr>
<tr>
<td>Heating resistor on inner layer</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
</tr>
<tr>
<td>Contact plug</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>—</td>
</tr>
<tr>
<td>Shielding print</td>
<td>—</td>
<td>—</td>
<td>■</td>
<td>—</td>
</tr>
</tbody>
</table>