Webinar
ECT Best Practice: How to handle a PCB project with embedded components?
How to handle a PCB project with embedded components?

- Basic Motivation
- Brief overview of technologies to embed discrete components
- Possible components
- Conceptual phase and layer constructions
- Design & layout
- Summary
How to handle a PCB project with embedded components?

Basic Motivation

- Brief overview of technologies to embed discrete components
- Possible components
- Conceptual phase and layer constructions
- Design & layout
- Summary
Embedded Component Technology – ECT

Advantages of „buried“ components?

Miniaturization

- Package replacement
- Space savings of assembly area on the outer layers

Performance/Function

- Integrated shielding
- Short signal paths
- Protection against plagiarism

Reliability

- Protected against influences
- Secure fixing
- Thermal management
How to handle a PCB project with embedded components?

Basic Motivation

Brief overview of technologies to embed discrete components

Possible components

Conceptual phase and layer constructions

Design & layout

Summary
Embedded Component Technology – ECT
ECT–µVia: Embedded active and passive devices

ECT–µVia Manufacturing

Assembly (Gluing/Sintering/Soldering)

Multilayer pressing

Drilling of vias and microvias
Non-plated microvia on embedded capacitor with Cu termination

length: 58.97 µm

length: 21.96 µm
Embedded Component Technology – ECT
ECT-µVia: Embedded active and passive devices

ECT-µVia Manufacturing

- Assembly (Gluing/Sintering/Soldering)
- Multilayer pressing
- Drilling of vias and microvias
- Plating and structuring
Embedded Component Technology – ECT
ECT-µVia: Embedded active and passive devices

Plated Microvia on embedded capacitor with Cu termination
Embedded Component Technology – ECT
ECT–Flip Chip: Embedded active devices

ECT-Flip Chip Production

Core with footprint for Flip Chip

Assembly (Flip Chip – ACA)

Multilayer pressing

Remaining PCB processes
How to handle a PCB project with embedded components?

Basic Motivation

Brief overview of technologies to embed discrete components

Possible components

Conceptual phase and layer constructions

Design & layout

Summary
Availability of components

Passive Components with Cu-Termination

<table>
<thead>
<tr>
<th>Component</th>
<th>Mounting Form</th>
<th>Thicknesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistors</td>
<td>0402</td>
<td>150 µm to 300 µm</td>
</tr>
<tr>
<td>Capacitors</td>
<td></td>
<td>150 µm</td>
</tr>
</tbody>
</table>

Bare Die Silicon ICs with process compatible pads

<table>
<thead>
<tr>
<th>Pads Type</th>
<th>Compatible Materials</th>
<th>Provision</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECT–µVia Pads</td>
<td>Cu, NiPd</td>
<td>Generally a customer provision</td>
</tr>
<tr>
<td>ECT–Flip Chip Pads</td>
<td>Wirebond Au Stud-Bumps, Wafer-level Au-Bumps</td>
<td></td>
</tr>
</tbody>
</table>
How to handle a PCB project with embedded components?

Basic Motivation

Brief overview of technologies to embed discrete components

Possible components

Conceptual phase and layer constructions

Design & layout

Summary
Very close collaboration is needed at a very early stage in the concept and design phase to be successful.
BOM – Analysis of an existing predecessor-layout (if available)

<table>
<thead>
<tr>
<th>Designator</th>
<th>Value</th>
<th>Quantity</th>
<th>Manufacturer</th>
<th>Manufacturer Part Number</th>
<th>Supplier 1</th>
<th>Supplier Part Number 1</th>
<th>Supplier Unit Price 1</th>
<th>Comment</th>
<th>Footprint</th>
</tr>
</thead>
<tbody>
<tr>
<td>nHIB, RST</td>
<td>2</td>
<td>2</td>
<td>C&K Components</td>
<td>KM231G-0CL-L5S</td>
<td>Digi-Key</td>
<td>CKN10243CT-ND</td>
<td>0.71</td>
<td>Value</td>
<td>Faster_Miniatur</td>
</tr>
<tr>
<td>ANT</td>
<td>1</td>
<td>Cinch Connectivity Solutions Johnson</td>
<td>128-731-201</td>
<td>Digi-Key</td>
<td>J983CT-ND</td>
<td>0.99</td>
<td>U.FL-R-SMT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROG</td>
<td>1</td>
<td>SAMTEC</td>
<td>FTS-104-03-F-DV-TR</td>
<td>Farnell</td>
<td>1928283</td>
<td>Stecker_8Pin</td>
<td>SAMTEC_FTS_104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R1, R2, R3, R4, R6, R8, R9, R10, R11, R13, R14</td>
<td>100k</td>
<td>13</td>
<td>Yageo</td>
<td>RC0603JR-07100K</td>
<td>Digi-Key</td>
<td>3A02</td>
<td>811-100X1CT-ND</td>
<td>0.10</td>
<td>Res3</td>
</tr>
<tr>
<td>R12, R15, R16, R18, R19</td>
<td>N.C</td>
<td>5</td>
<td>Panasonic Electronic Components</td>
<td>ERJ-2GEJ101X</td>
<td>Digi-Key</td>
<td>P100JCT-ND</td>
<td>0.10</td>
<td>Res3</td>
<td>D002</td>
</tr>
<tr>
<td>R17, R20</td>
<td>1</td>
<td>2</td>
<td>Panasonic Electronic Components</td>
<td>ERJ-2GS103X</td>
<td>Digi-Key</td>
<td>3A02</td>
<td>811-10K1CT-ND</td>
<td>0.10</td>
<td>Res3</td>
</tr>
<tr>
<td>T1, T2</td>
<td>N.C</td>
<td>2</td>
<td>N.C.</td>
<td>Testpin_0.8</td>
<td>Digi-Key</td>
<td>0.83</td>
<td>H11618CT-ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1, L3</td>
<td>2.2uH</td>
<td>2</td>
<td>Murata Electronics North America</td>
<td>LQM2HPN2R2M60L</td>
<td>Digi-Key</td>
<td>1008 (2520 Metric)</td>
<td>0.36</td>
<td>LQM2HPN2R2M60L</td>
<td>1008_inductor</td>
</tr>
<tr>
<td>L2</td>
<td>1uH</td>
<td>1</td>
<td>Murata Electronics North America</td>
<td>LQM2HPN3R0M60L</td>
<td>Digi-Key</td>
<td>1008 (2520 Metric)</td>
<td>0.42</td>
<td>LQM2HPN3R0M60L</td>
<td>1008_inductor</td>
</tr>
<tr>
<td>AUX</td>
<td>N.C</td>
<td>1</td>
<td></td>
<td>Header 2</td>
<td>Digi-Key</td>
<td>0.75</td>
<td>H2A12505CT-ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J1, J2, J3</td>
<td>3</td>
<td>Hirose Electric Co Ltd</td>
<td>DF4C-200P-0.4V(51)</td>
<td>Digi-Key</td>
<td>2445381</td>
<td>Dez 21</td>
<td>CC3100</td>
<td>PVQA96-64</td>
<td></td>
</tr>
<tr>
<td>U1</td>
<td>1</td>
<td>TDK Corporation</td>
<td>DFA2024050BT-1294C1-H</td>
<td>Digi-Key</td>
<td>445-172335-1-ND</td>
<td>0.54</td>
<td>DEA2024050BT-1294C1-H</td>
<td>DEA2024050BT-1294C1-H</td>
<td></td>
</tr>
<tr>
<td>U1</td>
<td>1</td>
<td>TEXAS INSTRUMENTS</td>
<td>CC3100R11A0GC</td>
<td>Digi-Key</td>
<td>2445381</td>
<td>Dez 21</td>
<td>CC3100</td>
<td>PVQA96-64</td>
<td></td>
</tr>
<tr>
<td>C1, C6, C7, C9, C10, C15, C16, C21, C22, C23, C27</td>
<td>100nF</td>
<td>13</td>
<td>Taiyo Yuden</td>
<td>BM150811506V-F</td>
<td>Digi-Key</td>
<td>587-1227-1-ND</td>
<td>0.034</td>
<td>Cap Semi</td>
<td>D002</td>
</tr>
<tr>
<td>C12</td>
<td>1uF</td>
<td>1</td>
<td>Murata Electronics North America</td>
<td>GRM155M6J105M15D</td>
<td>Digi-Key</td>
<td>490-5409-1-ND</td>
<td>0.14</td>
<td>Cap Semi</td>
<td>D002</td>
</tr>
<tr>
<td>C13, C14</td>
<td>2uF</td>
<td>2</td>
<td>Taiyo Yuden</td>
<td>AMX3025E122MKA</td>
<td>Digi-Key</td>
<td>587-3626-1-ND</td>
<td>0.66</td>
<td>Cap Semi</td>
<td>D002</td>
</tr>
<tr>
<td>C18, C19, C20</td>
<td>4.7uF</td>
<td>3</td>
<td>Samsung Electro-Mechanics America, Inc</td>
<td>CRM16475M162RNAC</td>
<td>Digi-Key</td>
<td>1276-1056-1-ND</td>
<td>0.22</td>
<td>Cap Semi</td>
<td>D002</td>
</tr>
<tr>
<td>C2, C3</td>
<td>6.2pF</td>
<td>2</td>
<td>Murata Electronics North America</td>
<td>GRM1555C147M684D01D</td>
<td>Digi-Key</td>
<td>490-8224-1-ND</td>
<td>0.10</td>
<td>Cap Semi</td>
<td>D002</td>
</tr>
<tr>
<td>C24, C25</td>
<td>100nF</td>
<td>2</td>
<td>TDK Corporation</td>
<td>C261505R0107M60AB</td>
<td>Digi-Key</td>
<td>445-6509-1-ND</td>
<td>0.14</td>
<td>Cap Semi</td>
<td>D002</td>
</tr>
<tr>
<td>C4, C5, C6</td>
<td>10pF</td>
<td>3</td>
<td>AVX Corporation</td>
<td>Y04025U100CA17A</td>
<td>Digi-Key</td>
<td>478-3591-1-ND</td>
<td>0.14</td>
<td>Cap Semi</td>
<td>D002</td>
</tr>
<tr>
<td>C8, C11, C17</td>
<td>10uF</td>
<td>3</td>
<td>Murata Electronics North America</td>
<td>GRM1588R60106M647D</td>
<td>Digi-Key</td>
<td>490-3896-2-ND</td>
<td>0.22</td>
<td>Cap Semi</td>
<td>D002</td>
</tr>
<tr>
<td>XT2</td>
<td>1</td>
<td>Abracon Corporation</td>
<td>ABS07-32.76KHZ-T</td>
<td>Digi-Key</td>
<td>535-9542-1-ND</td>
<td>Jan 24</td>
<td>ABS07-32.76KHZ-T</td>
<td>ABS07</td>
<td></td>
</tr>
<tr>
<td>XT1</td>
<td>1</td>
<td>AVX Corp/Kyocera Corp</td>
<td>CJX3225G640000006EQCC</td>
<td>Digi-Key</td>
<td>1253-1122-1-ND</td>
<td>0.75</td>
<td>40MHz</td>
<td>CMAC-XTAL_2.Sa.3.2</td>
<td></td>
</tr>
</tbody>
</table>
Embedded Component Technology – ECT
Analysis of existing boards with regard to usability of embedded components

BOM – Analysis of an existing predecessor-layout (if available)

- Embeddable Components identified in BOM
Embedding of active and passive components:

Initial meeting

Final implementation
How to handle a PCB project with embedded components?

Basic Motivation

Brief overview of technologies to embed discrete components

Possible components

Conceptual phase and layer constructions

Design & layout

Summary
EDA-Tools for ECT:
The latest versions of these tools:

- **Altium Designer**
- **Cadence Allegro® PCB Designer**
- **Mentor Graphics® xpedition**
- **ZUKEN CR-8000**

Further tools possible, but with limitations.
EDA-Tools for ECT:
Main differences between these tools

ECT capable tools:
- Central part libraries, footprints may be moved to any Layer of the layout
- 3D Design Rule Check including mechanical checks

ECT incapable tools:
- Application specific part library, same layer stack for library and application board with footprint on dedicated layer
- Only 2D Design Rule Check, no Z-axis-check
Embedded Component Technology – ECT
Design Rules ECT–μVia and ECT–Flip Chip

pad Ø
- 175 µm

end Ø
- 70 µm

component height
- ≥ 150 µm
- (<150 µm upon request)

dielectric thickness
- 20 – 25 µm
- ≥ 50 µm

pitch
- ≥ 250 µm

distance
- pad / pad ≥ 75 µm
- next component ≥ 300 µm
- chip / sidewall ≥ 500 µm
- pad / pad ≥ 75 µm
- next component ≥ 300 µm
- chip / sidewall ≥ 500 µm

pad metallization
- ≥ 6 µm Cu or
- ≥ 5 µm Ni + flash Pd

embedded component
- ≤ 5 mm x 5 mm

adhesive
- ACA / NCA / ESC (Encapsulated Solder Connection)

backside contact (microvia or ICA) available upon request

dielectric thickness
- ≥ 50 µm

pad Ø
- ≥ 125 µm

distance
- pad / pad ≥ 75 µm
- next component ≥ 300 µm
- chip / sidewall ≥ 500 µm
- pad / pad ≥ 75 µm
- next component ≥ 300 µm
- chip / sidewall ≥ 500 µm

embedded flip chip
- ≤ 5 mm x 5 mm

adhesive
- ACA / NCA / ESC (Encapsulated Solder Connection)
How to handle a PCB project with embedded components?

Basic Motivation

Brief overview of technologies to embed discrete components

Possible components

Conceptual phase and layer constructions

Design & layout

Summary
How to handle a PCB project with embedded components?

Summary

- Different technologies possible
- Components must meet certain conditions
- Würth Elektronik already provides support during conceptual phase for
 - layer constructions,
 - design and
 - layout

Jürgen Wolf
Würth Elektronik GmbH & Co. KG
Product Manager
Embedded Component Technology