

<mark>∢V</mark>r

DRIVER

9 SHDN/UVLO

- 1.220

Switch

GLOBAL POWER DESIGN SEMINAR TOUR

SMPS tips and tricks

- Driver limits
 - Power limits
 - We know how much current is necessary to power the MOSFET gate:

$$\overline{Ic} = U \cdot C \cdot f = Q_g \cdot f$$

- A special care must be observed about power limits of the driver for MOSFET driving, here an example with an internal LDO; specially at "high" voltages.
- Internal quiescent current I_q is in general quite small regarding gate driving needs.

$$P_{diss} = (V_{in} - V_{LDO}) * (\overline{IC} + I_a)$$

• Depending overall thermal resistance of the IC mounted on PCB, too much dissipation could lead to thermal runaway or self-protection.

7 JULY 4, 2025 TECHNICAL ACADEMY

GLOBAL POWER DESIGN SEMINAR TOUR

SMPS tips and tricks

What is the **best** MOSFET ?!

• Sometimes parameters could confuse designer and make mistakes happen Most common: speak about *RDS_{ON}* all other parameters already selected

• What is the best choice for best performances in a converter ?

	BSC066N06NS			BSC028N06NS		
	Parameter	Value	Unit	Parameter	Value	Unit
	Vds	60	V	Vds	60	V
	RDSon	6,6	mΩ	RDSon	2,8	mΩ
	ld	64	А	ld	132	А
	Qoss	19	nC	Qoss	43	nC
	Qg	17	nC	Qg	37	nC
	tr	3	ns	tr	38	ns
	tf	3	ns	tf	8	ns
10 JULY 4, 2025 TECHNICAL ACADEMY						

<u>BREAK</u>	
Networking : Take a rest !	
51 JULY 4, 2025 TECHNICAL ACADEMY	₩ /

WE

ART OF LOOP COMPENSATION

Control theory and loop

53 |

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><image><image>

·140°

-160°

-180° (0°)

200

220

100kHz

 $G_{\rm M} \approx 8 dB$

ANALOG DEVICES

 $\varphi_{\rm M} \approx 85^\circ$

 $f_{x} \approx 10 kHz$

10kHz

*G*_{OL} (s)

Typical bode plot – Open loop

If the open loop transfer function is measured in a closed loop configuration (by Frequency Response Analysis) -180° corresponds to

0°. Reason is the inverting behavior of the error amplifier which is

automatically considered. The phase margin can be read directly from

1kHz

0° (this is the case in all following slides)

- Gain margin G_M
 Gain below 0dB when the phase reaches 180° ("−")
- 10-15dB is considered good .
- Gain margin too low \rightarrow low variation robustness \rightarrow oscillations could be the result

59 JULY 4, 2025 TECHNICAL ACADEMY

ANALOG DEVICES

TRANSFER FUNCTION OF THE PLANT

What does it depend on?

- > The plant transfer function depends on:
 - Control technique (e.g. voltage- / current-mode control)
 - Topology of the converter (e.g. buck, boost)
 - Conduction mode (DCM discontinuous conduction mode, CCM continuous conduction mode)
 - Controller IC (internal gains, compensation ramp)
 - Components used (capacitors, inductors, power semiconductors)
 - Input- and output-voltage
 - Load

63 JULY 4, 2025 TECHNICAL ACADEMY

k/E

<u>COMPENSATOR</u> <u>DESIGN</u>

71 JULY 4, 2025 TECHNICAL ACADEMY

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item>

SMART SELECTION OF INDUCTORS AND CAPACITORS

INDUCTOR SELECTION

Inductance value production and quality measurement

- Inductance is measured with LCR meter
 - With a specific set up
- Samples can be ordered with the nearest standard values

Electrical Properties:

Properties	Test conditions		Value	Unit	Tol.
Inductance	1 kHz/ 250 mV	L	10	μH	±20%
Rated current	∆T = 40 K	IR	7.1	A	max.
Saturation current	L∆L/LI < 10%	Isat	10.5	A	typ.
DC Resistance	@ 20°C	R _{DC}	0.013	Ω	typ.
DC Resistance	@ 20°C	RDC	0.021	Ω	max.
Self resonant frequency		fres	21	MHz	typ.

102 JULY 4, 2025 TECHNICAL ACADEMY

l./F

RATED CURRENT

RATED CURRENT

Heating shown in the Datasheet

Datasheet sample

• Rated current mention in the datasheet

Test conditions

100 kHz/ 1 V

IΔL/LI < 30 %

@ 20 °C

ΔT =

DC

Value

1

5.9

11.5

11

159

120

Unit Tol.

μH ±30%

A max.

W/E

A typ.

mΩ ±30%

MHz typ.

V max.

Electrical Properties:

Dimensions: [mm]	Recommended Land Pattern: [mm]	Electrical Properties:			./	Properties	
र प्राप्त स		Properties Inductance Rated Current Saturation Durrent	Test condition L 100 kHz/1 V Vg ΔT = 40 K Loss WA1 < 30 %	Nature Unit Tot. 1 μH a309 5.9 A max. 11.5 4 bn		Inductance	1
		DC Resistance Self Resonant Frequency Operating Voltage	R ₀₀ @ 20 °C I _m V DC	11 mD ±309 150 MHz 80 120 V max		Rated Current	۱ _۴
29 40.3		Certification:				Saturation Current	I _S
6 03	28 18	REACH Approval Contern or declared (SC 199700) REACH Approval Contern or declared (SC 199700) Reaching the contern of declared (SC 199700)		DC Resistance	R		
Marking a subset	Schamption	Halogen Free Component Qualification	Pree Contorn (EC 61243-2-21) ant Qualification ALC-0200 Grade 1			Self Resonant Frequency	fre
	actionatio:				U	Operating Voltage	V
		General Information:			, N		
		Ambient Temperature (referring to lg)	-40 up to +85 °C				
	<u>.</u>	Operating Temperature -40 up to +125 °C					
		packaging) < 40 °C < 75 % Bi					
		Meistare Sanativity Level (MS2) 1 Test conditions of Electrical Properties: +20 °C, 33 % PH If net specified differently					
Product Marking:							
Start of Niedling Marking 1R0 (inductance Code)	6 0 0 4	0400 800 000 000 000 000 000 000 000 000	0 2009.112942 1 ON 80 2798 14]		
	ne an man M1	WE-LQS SMT Semi-Shielded					
	WURTH WURTH Me Look 1	Power Inductor 74404064010		1			
	MORE THAN NOU EXPECT Not 10 (2010)	6045 1	kaner or dias	1963 Mai Mali 1.6			
This dense are prepared as a single or society or uses 2 per denses approximation in the society of a society of a Los of power are then experiment with a society of the society of the society of the society of the society of the society of the society denses are power with a society and the society has been by add with a dense polynomia.	es signe adeg selection en visibility constraints equivales technical or entre a factor of two products instranded one of their before deposition, benegetabler agait, shaden provertion, matical parts internation analysis do. Sales S	and a construction of the state for the state	ne mershel ar sprannet specifical, han't mage latters for design it stop	perroy act as these Net Tetratical and let			
106 JULY 4, 2025 TECHNICAL ACADEMY							

RATED CURRENT

Explained setup

- This value describes the direct current at which the component self heating increases (ΔT)
- The method Würth Elektronik uses to measure the rated current is based upon section 6 of the IEC 62024-2:2020 standard to provide transparent and comparable Ir values. A test PCB with a Power Inductor is contained within a box of roughly 20 cm on each side and does not contact directly with the surrounding box. Only natural heat exchange occurs, with no forced heat transfer applied to the test PCB.

107

107 JULY 4, 2025

		encuenni	lion ; the truth about It		Electrical Properties:							
edefining A	Rated Curi	rent Meas	surements for Power Indu	uctors	Properties		Test conditions	Value	Unit	tol.		
The rated	curront is	rolated	rom tomporature claust	00	Rated Current	I _{R,40K}	$\Delta T = 40 \text{ K}$	15	A	max.		
me rated	current is	s related f	rom temperature elevati	011	Performance Rated Current 1)	I _{RP,40K}	ΔT = 40 K	23.5	A	max.		
40K is	a "standa	rd" comn	non value often the differ	rence between 🖊	Saturation Current @ 10%	I _{SAT,10%}	IΔL/LI < 10 %	15.4	Α	typ.		
	nont to		and ampliant to magnet		Saturation Current @ 30%	I _{SAT,30%}	IΔL/LI < 30 %	38	Α	typ.		
compo	nent tem	perature a	and ambient temperature	2.	DC Resistance	R _{DC}	@ 20 °C	2.7	mΩ	typ.		
40K is	also the n	naximum	temperature rise of the I	EC62024-	DC Resistance	RDC	@ 20 °C	3.5	mΩ	max.		
§6.4.3	i) into sta Table 2 -	ndard page	ge 15 idth and thickness	seriormances.	General Properties:							
Rated current	Pattern width	width Pattern thickness Example application			Ambient Temperature (referring to I _R) -4(0 up to +85 °C				
ciusa	mm	μm			Operating Temperature		-40	up to +125 °C				
I _{class} A	(1,0 to 22,0) ± 0,2 to 0,5	35 ± 10	Consumer application (single-sided printed circuit boards application)		Storage Conditions (in original packaging) < 40 °C ; < 75 % RH							
I _{class} B	40 ± 0,2	35 ± 10	Consumer application (double-sided printed circuit boards application)		Moisture Sensitivity Level (MSL) 1							
6	40 ± 0,2	105 ± 10	Consumer application (multilayer printed circuit		Test conditions of Electrical Properties: +20 °C, 33 % RH if not specified differently							
Iclass C		1000 ± 50	Automotive or large current power line application	l	Test conditions of Performance Rated Current: refer to IEC 62024-2, Class C (PCB Copper Width: 40 mm; PCB Copper Thickness: 105 µm)							
I _{class} C I _{class} D	40 ± 0,2			NOTE 1 Idass a see Figure 2a). NOTE 2 Idass B, Idass C, Idass D, See Figure 2b). NOTE 2 Idass B, Idass C, Idass D, See Figure 2b).								

INDUCTOR SELECTION

Saturation Current

• The current that causes an inductance drop compared to it initial inductance value. In most cases for our inductors a drop of 10% is specified.

Electrical Properties:

Properties	Test conditions		Value	Unit	Tol.
Inductance	1 kHz/ 250 mV	L	10	μH	±20%
Rated current	ΔT = 40 K	IR	7.1	A	max.
Saturation current	I∆L/LI < 10%	Isat	10.5	A	typ.
DC Resistance	@ 20°C	RDC	0.013	Ω	typ.
DC Resistance	@ 20°C	RDC	0.021	Ω	max.
Self resonant frequency		fres	21	MHz	typ.

123 JULY 4, 2025 TECHNICAL ACADEMY

W/E

<u>CAPACITIVE POWER</u> <u>SUPPLY</u>

153 JULY 4, 2025 TECHNICAL ACADEMY

CAPACITOR						l	
Capacitive Power Supplies							
 Log results (truncated) "CTRL L" to display log file for measurements 	Param Name start:	Formula 300ms	Values 0.3	FROM	Start	to si	top
	end:	600ms	0.6				
	prectagain:	pd1+pd2+pd3+pd4	0.0515952				
Simulate: transient analysis .tran 600ms startup : Power Efficiency Calculation	plosses:	prectagain+pcout+pzener+prbleed+prin	0.174153				
.meas start PARAM 300ms .meas PacetAgain param 500ms .meas PAcetAgain param PLin 2/13/(Cin:1)) from start to end .meas PAREtAgain Param PLin 2/13/(Cin:1)) from start to end .meas Pin param (V(Fine:Afgain + PCout + Pzener + PRbleed + PRin .meas Pin param Pout/(Pout+Plosses) from start to end .meas Pin param Pout/(Pout+Plosses) from start to end .meas Pout AVG V(VOUT)*1(R, LOAD) from start to end .meas Pint Caparam Pout/Pin ; Power Factor Calculation	pin_p:	AVG(-i(vin)*v(l,n))	0.492995	FROM	0.3	то о	.6
	pout: effic:	AVG(v(vout)*i(r_load)) pout/pin_p	0.388436 0.78791	FROM	0.3	TO 0.	.6
	irms:	RMS(i(vin))	0.0233345	FROM	0.3	то о	.6
.meas Irms RMS I(VIN) from start to end .meas Vrms RMS V(LN) from start to end .meas PII_S param Vrmstrrrs	vrms:	RMS(v(l,n))	229.81	FROM	0.3	TO 0.	.6
	pin_s:	vrms*irms	5.36251				
	р і.	hii-h, hii-2	0.0319330				
155 JULY 4, 2025 TECHNICAL ACADEMY				AN DE	alo Vice	G S	w/F

<u>GOOD TO KNOW</u>

Some other technologies and structure • Snap-in and screw... https://www.wee online.com/en/components/products/pbs/capacitors/aluminium_electrolytic_capacitors/ auminium_electolytic_snap-in_capacitors https://www.wee online.com/en/components/products/pbs/capacitors/aluminium_electrolytic_capacitors/ wcap_screw_capacitors • Non polar https://www.wee-online.com/en/components/products/WCAP-ASNP

