

RF TRANSCEIVER

Carpov Pascual – Field Application Engineer

WURTH ELEKTRONIK MORE THAN YOU EXPECT

RADIO FREQUENCY TRANSCEIVER

Contents

- Radio technologies
- RF Transceiver circuit blocks
- LTCC
- Components and specifications
- WE Support

^{*} Some presentation images have clickable web links

RADIO TECHNOLOGIES

PARAMETER		LICENS	ED FREE ISM (IN	DUSTRIAL, SCIEN	NTIFIC, MEDICA	AL) BANDS		LICENSED CE	LLULAR BANDS
Frequency [MHz]	169	433	868	915	1500	2400	5000	700 900 1800	2100 2600 3500
Wavelength [cm]	178	69	35	33	20	13	6	43 33 17	14 12 9
Radio Protocol	M-Bus	WARE	M-Bus Ware forms Ware	M-Bus (MARE) Long-Range Sigfox Zigbee Wave	GALILEO	Bluetooth Zigbee matter THREAD Wirepas IEEE 802.15.4	WIF	ite 5a	NB-IoT
Range	middle	middle	high	high	high	low	low	high	high
Data Rate	low	low	middle	middle	low	high	high	high	low
Würth Elektronik Antennas	\$ C								
Typical Certification	CE	CE	CE	FCC, IC	worldwide	worldwide	worldwide	worldwide	worldwide

RADIO TECHNOLOGIES

Applications

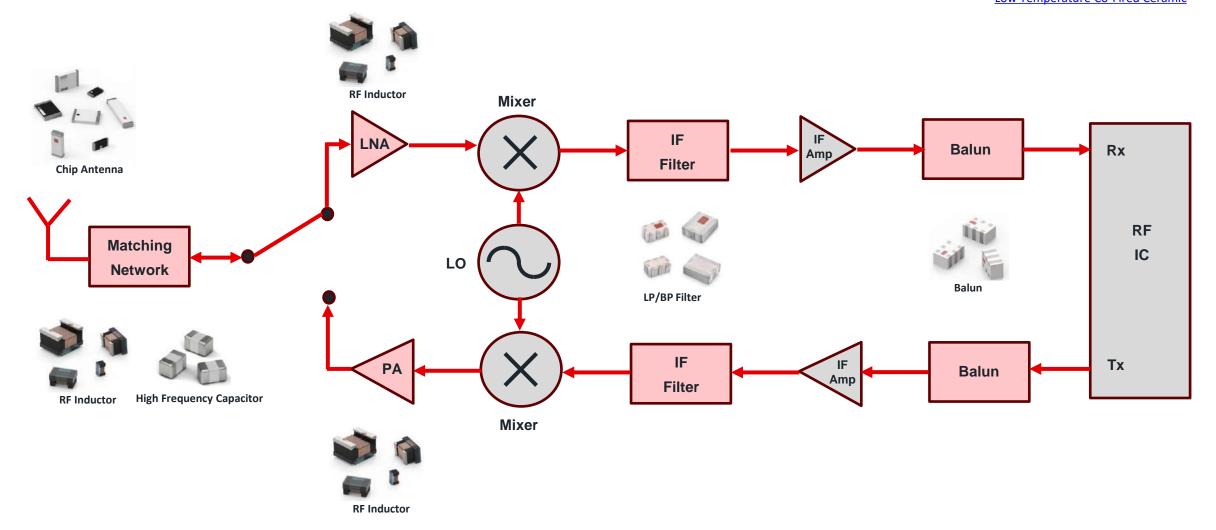
Transport robot logistics

Smart Billboard

USB Radio Stick Dongle

Handheld Oxygen Meter

Forestry Tool – Felling Wedge



RF TRANSCEIVER

Typical Block Diagram

WE Technical References:

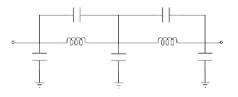
eiSmart Product Guide
IC Reference Designs
Würth Elektronik Application Guide.
Low Temperature Co-Fired Ceramic

LTCC COMPONENTS

Advantages

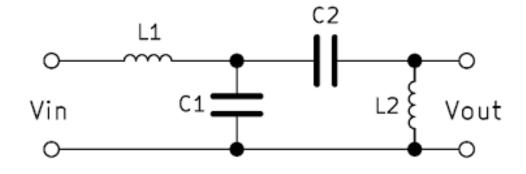
Low Temperature Co-fired Ceramic

- Mixture of Alumina, Glass, Ceramic
- Many components in "one"
- Small size
- Low losses (up to 60 GHz)
- High reliability
- Stable temperature behavior


WE-MCA Antennas

Signal Filters

WE-BAL Multilayer Chip Balun



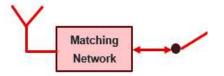
LTCC VS DISCRETES

VS.

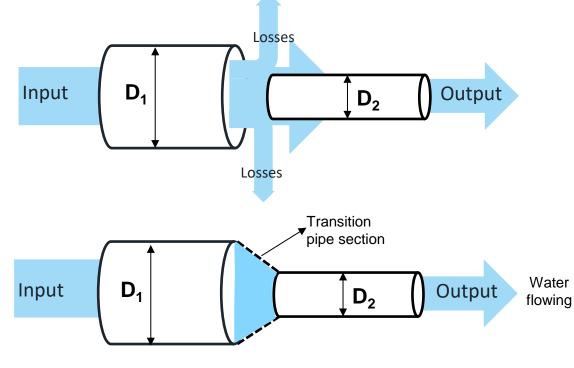
LTCC

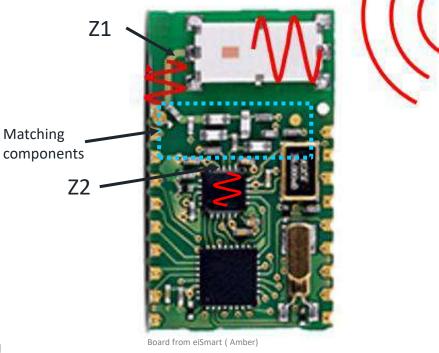
- + Small Size
- + More Accurate
- Less flexibility

Discretes


+ More flexibility

- More components
- Less accuracy
- Bigger size

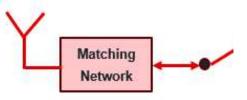

MATCHING NETWORK



If Electronic signal will be water, and a PCB trace will be the pipe

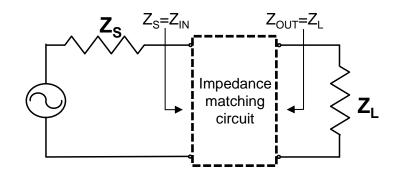
A part of the water will be lost if we use different tube size without transition pipe section

The transition pipe section help to concentrate the water in the second tube to avoid losses

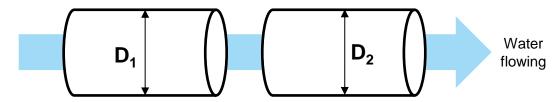


In RF application we use RF inductors and RF Capacitors to "match" the different line when we have different impedance

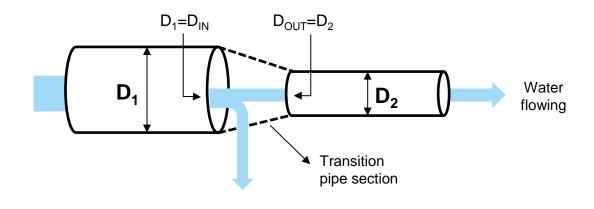
MATCHING NETWORK

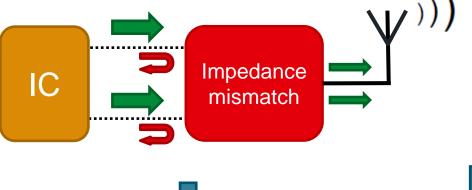


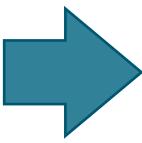
• Matched case: $Z_S = Z_L$

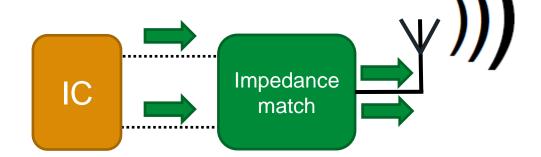


 z_s

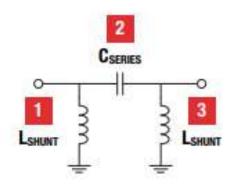

Unmatched case: Z_S ≠ Z_L

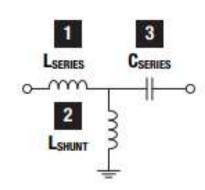

D₁ = D₂: All water flows through the pipe

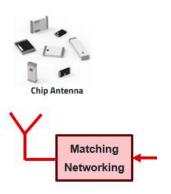

• $D_1 \neq D_2$: Water wasted



MATCHING NETWORK




- At any transition of different impedances, an impedance matching filter is necessary
 - Minimize signal reflection
 - Maximize the power transfer
 - Best possible energy transfer from stage to stage
 - Improves the consumption


Impedance matching circuit

Some use capacitor in series for DC blocking.

WE Portfolio

Antenna Matching and Characterization Support

Würth Elektronik is offering not just the components for a matched Antenna Network, we can also support in the process of designing.

Learn more

Antenna

WE-MCA

Highest size to performace ratio

- SMD multilayer chip antenna
- Extremely low profile
- Omni-directional radiation
- Operating temperature: -40 °C to +85 °C
- Very high performance to size ratio
- Applications: GSM, WLAN, Bluetooth, Home RF, IoT

EXPERT **RF Antennas**

V	Order Code	Series 7	Size V	Spec	f _{min}	f _{max}	Peak Gain	VS ₹	Z 7	
	○ 7488910043	WE-MCA	25 x 5	200	423 MHz	443 MHz	-4.00 dBi	2	50.0 Ω	
	÷ 7488920245	WE-MCA	7.6 x 3.5	(ADD)	2.40 GHz	2.50 GHz	1.30 dBi	2	50.0 Ω	
	· 7488920157	WE-MCA	5.2 x 3.7	1	1.55 GHz	1.60 GHz	3.40 dBi	2	50.0 Ω	
	7488922455	WE-MCA	5.2 x 3.7	007	2.40 GHz	6.00 GHz	3.30 dBi	2	50.0 Ω	
		WE-MCA	9.0 x 2.0	1	2.40 GHz	2.50 GHz	3.00 dBi	2	50.0 Ω	
		WE-MCA	3.2 x 1.6	600	2.40 GHz	2.50 GHz	0.500 dBi	2	50.0 Ω	
	· 74889402450	WE-MCA	7.0 x 2.0	0007	2.40 GHz	2.50 GHz	2.70 dBi	2	50.0 Ω	

Specifications

Electrical Properties:

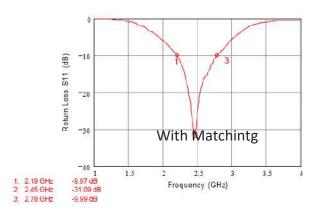
Properties		Test conditions	Value	Unit	Tol.
Frequency Range Min & Max			423-443	MHz	
Frequency Range	f		423-443 MHz		
VSWR		423 - 443 MHz	2		max.
Impedance	Z		50	Ω	typ.
Peak Gain	G _{peak}	423 - 443 MHz	-4	dBi	typ.

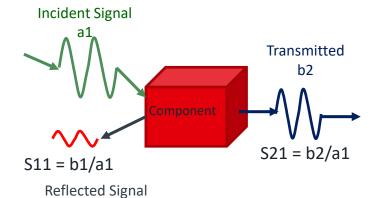
More than 90% of the signal is transferred.

Return loss (dB)	Return loss (Absolute Value)	VSWR
00	0	1
26.848	0.0454	1.1
20.827	0.0909	1.2
15.563	0.1667	1.4
12.736	0.2307	1.6
10.881	0.2857	1.8
9.542	0.3333	2
6.020	0.5000	3
4.436	0.6000	4
3.521	0.6667	5
1.743	0.8181	10
0.8693	0.9047	20
0.3474	0.9607	50
0.1737	0.9801	100

Poturn loss (dR) Poturn loss (Absolute

VSWP

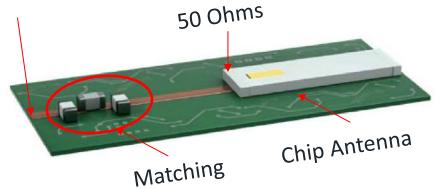

Good


Bad

VSWR stands for Voltage Standing Wave Ratio

is an indication of the amount of mismatch between an antenna and the feed line connecting to it.

The smaller the better.


b1

Specifications

Electrical Properties:

Properties		Test conditions	Value	Unit	Tol.
Frequency Range Min & Max			423-443	MHz	
Frequency Range	f		423-443 MHz		
VSWR		423 - 443 MHz	2		max.
Impedance	Z		50	Ω	typ.
Peak Gain	G _{peak}	423 - 443 MHz	-4	dBi	typ.

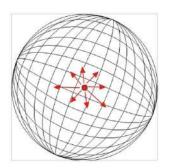
The impedance of the Antenna should match as much as possible to the impedance of the circuit.

Specifications

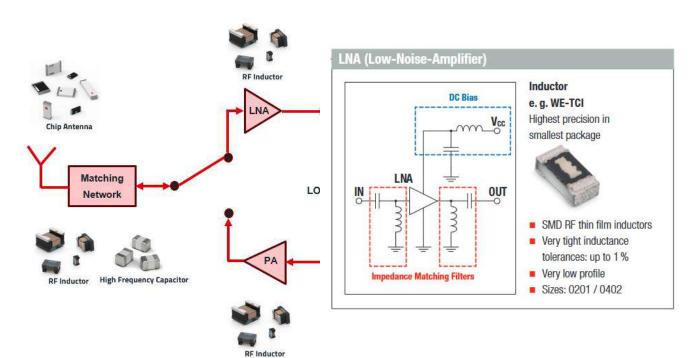
Electrical Properties:

Properties		Test conditions	Value	Unit	Tol.
Frequency Range Min & Max			423-443	MHz	
Frequency Range	f		423-443 MHz		
VSWR		423 - 443 MHz	2		max.
Impedance	Z		50	Ω	typ.
Peak Gain	G _{peak}	423 - 443 MHz	-4	dBi	typ.

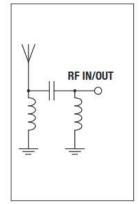
dBi: isotropic Gain

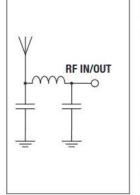

Define the Gain of the antenna compare to an isotropic Antenna. (Isotropic antenna does not exist, it's only theoretical point of view)

(G) – how much stronger the antenna transmits or receives signal compared to the isotropic antenna (in a linear scale).


$$G(dBi) = 10log(G)$$

$$G=10^{\frac{G(dBi)}{10}}$$

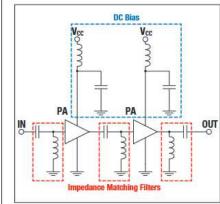

Theoretically, the isotropic antenna is an infinitesimally small point in space, radiating ideally uniformly in all directions in space, without reflections and losses (its radiation characteristics is spherical).



Applications

Matching Network Examples

Inductor e. g. WE-MK Highest robustness


WCAP-CSRF Optimized inner structure for RF applications

Capacitor

- SMD RF multilayer ceramic inductors
- Very high SRF
- High reliability chip inductors
- Sizes: 0201 / 0402 / 0603

PA (Power Amplifier)

Inductors e.g. WE-KI / WE-KI HC Best quality-to-price ratio

- SMD RF wire wound ceramic inductors
- High Q-factor
- Large currents supported
- Inductance tolerances: 2% and 5%
- Sizes: 0402 / 0603 / 0805 / 1008

e.g. WE-CAIR Best performance

- SMD RF air core inductors
- Very high Q-factor
- Very large currents supported
- Inductance tolerances: 2 % and 5 %
- Sizes: 1322 / 1340 / 3136 / 3168 / 4248 / 5910

WE Portfolio

Construction

Wire wound i	nductors	Multilayer inductors	Thin film inductors		
With core	Air core				
WE-KI / WE-KI HC / WE-RFI / WE-RFH	WE-CAIR / WE-AC HC	WE-MK	WE-TCI		

WE-KI SMT Wire Wound Ceramic Inductor

L 1 to 1800 nH | Qmin. 13 to 60 % | IR 100 to 1360 mA

WE-TCI Thinfilm Chip Inductor

L 1 to 27 nH | Qmin. 8 to 13 % | IR 75 to 700 mA

WE-KI HC SMT High Current Wire Wound Ceramic Inductor

L 1 to 390 nH | Q_{min.} 10 to 46 % | I_R 170 to 2300 mA

WE-MK Multilayer Ceramic SMT Inductor

L 1 to 470 nH | Q_{min.} 4 to 18 % | I_B 110 to 1300 mA

WE-RFI Ferrite SMT Inductor EXTENDED

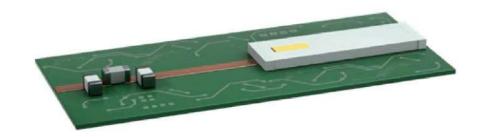
L 20 nH to 47 μH | Q_{min.} 11 to 45 % | I_R 45 to 1910 mA

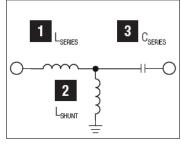
WE-CAIR Air Coil

L 1.65 to 538 nH | Q_{min.} 100 to 140 % | I_R 1.5 to 4 A

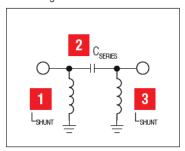
WE-RFH Ferrite SMT Inductor

L 0.47 to 10 µH | Q_{min}, 15 to 45 % | I_R 300 to 760 mA




WE-AC HC High Current Air Coil

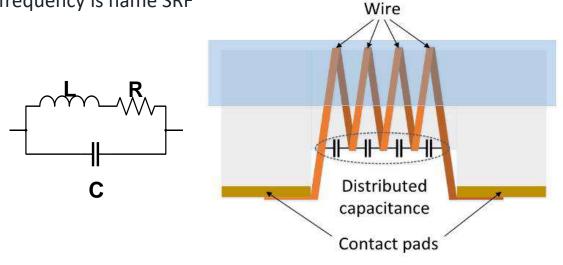
L 22 to 146 nH | Q_{min.} 163 to 280 % | I_R 19 to 40 A



Specifications

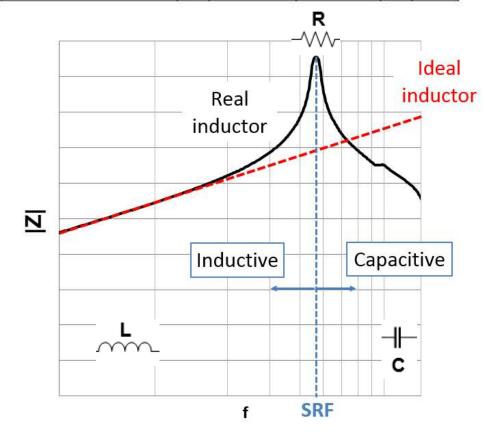
T matching for Point A

The **inductance** value is always defined with a tolerance in % (1%, 2% or 5%) or in value (+/-0,2nH).


The frequency for test condition is also important.

Properties		Test conditions	Value	Unit	Tol.
Inductance	L	100 MHz	1.5	nH	±0.1nH
Q-Factor	0	100 MHz	4		min.
DC Resistance	R _{DC}	@ 20 °C	0.13	Ω	max.
Rated Current	I _R	ΔT = 20 K	430	mA	max.
Self Resonant Frequency	fres		10000	MHz	min.

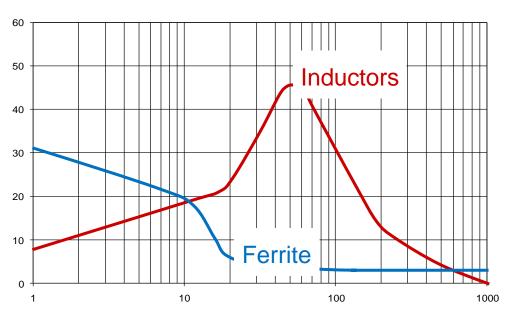
Specifications


Self Resonant Frequency (SRF)

- In low frequency the impedance only comes from the inductive part.
- In very high frequency the impedance of the inductor become capacitive.
- In the middle when ZL and Zc compensate each other the inductor become purely resistive, at this frequency the Impedance is Maximum and the frequency is name SRF

To use the inductor as an inductance the operating frequency must be lower than the SRF.

Properties		Test conditions	Value	Unit	Tol.
Inductance	L	100 MHz	1.5	nH	±0.1nH
Q-Factor	0	100 MHz	4		min.
DC Resistance	R _{DC}	@ 20 °C	0.13	Ω	max.
Rated Current	l _R	ΔT = 20 K	430	mA	max.
Self Resonant Frequency	fms		10000	MHz	min.



Specifications

Q-Factor

- It defines the "quality" of the inductor
- "Q" is defined as the ratio of the amount of energy stored versus the amount of energy dissipated per cycle.
- A higher Q factor means lower losses and better suitability for high-frequency applications.

Ferrites are also inductors but with high losses.

For a ferrite the Q is below a value of 3

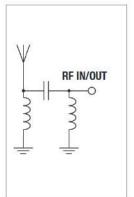
Properties		Test conditions	Value	Unit	Tol.
Inductance	L	100 MHz	1.5	nH	±0.1nH
Q-Factor	0	100 MHz	4		min.
DC Resistance	R _{DC}	@ 20 °C	0.13	Ω	max.
Rated Current	I _R	ΔT = 20 K	430	mA	max.
Self Resonant Frequency	fres		10000	MHz	min.

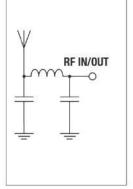
Specifications

Electrical Properties:

Properties		Test conditions	Value	Unit	Tol.
Inductance	L	100 MHz	1.5	nH	±0.1nH
Q-Factor	0	100 MHz	4		min.
DC Resistance	R _{DC}	@ 20 °C	0.13	Ω	max.
Rated Current	I _R	ΔT = 20 K	430	mA	max.
Self Resonant Frequency	f _{res}		10000	MHz	min.

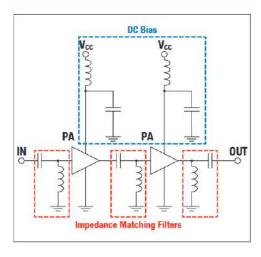
Like for power inductor the **Rated current** is defined for a self heating generated by a DC current. The self heating can be low (for example 15K)

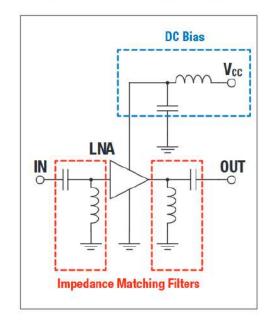

The **DC** Resistance is generally specified as a Max value The DC Resistance influence the Q factor



RF CAPACITOR

Applications


Matching Network Examples



Capacitor WCAP-CSRF Optimized inner structure for RF applications

PA (Power Amplifier)

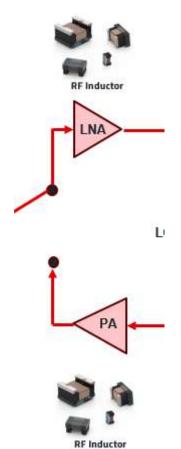
LNA (Low-Noise-Amplifier)

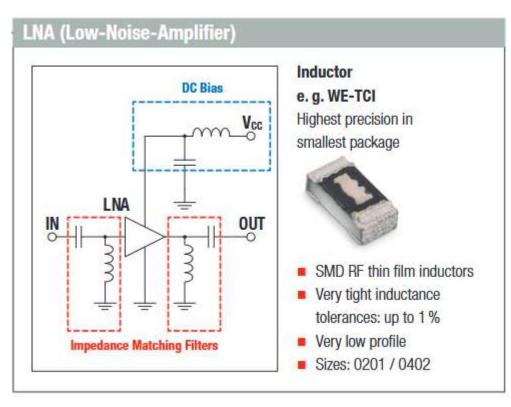
Characteristics

- High frequency product series
- Mounting style: SMT-Chip
- Ceramic: NPO (Class I)
- Capacitance range: 0.2 pF 33 pF
- Temperature Coefficient: ±30 ppm/°C
- Voltage range (UR): 25 50 V(DC)
- Operating temperature: -55 °C up to + 125 °C
- Sizes: 0201 / 0402
- Termination: Cu/Ni/Sn
- Recommended soldering: Reflow soldering

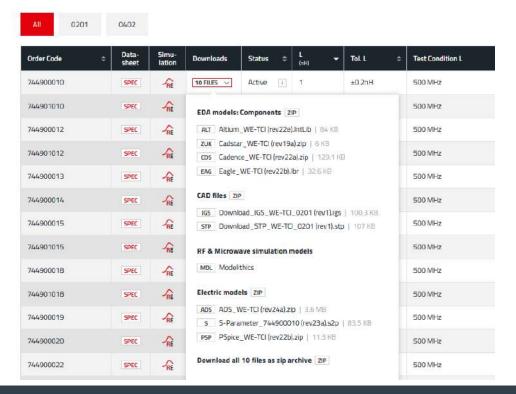
QUESTION #1

Which is/are not part of a typical RF transceiver?

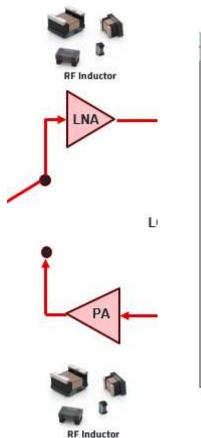

- a) Balun
- b) Antenna
- c) Matching circuit
- d) Sensors
- e) Intermediate frequency, Low-noise and Power amplifiers
- f) Memory
- g) RF System on Chip (SoC)

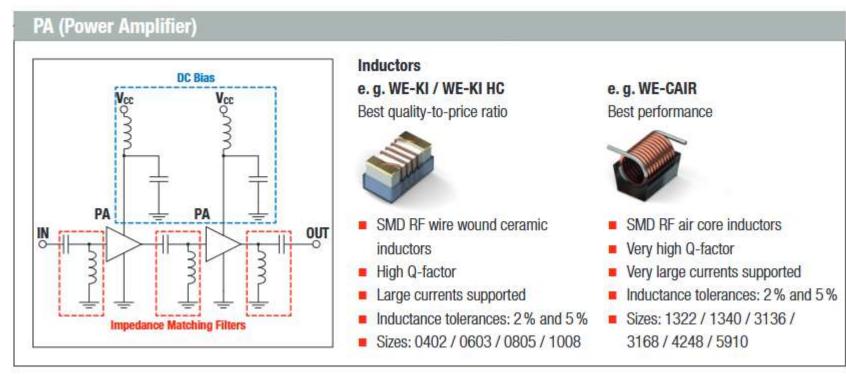


LOW NOISE AMPLIFIER

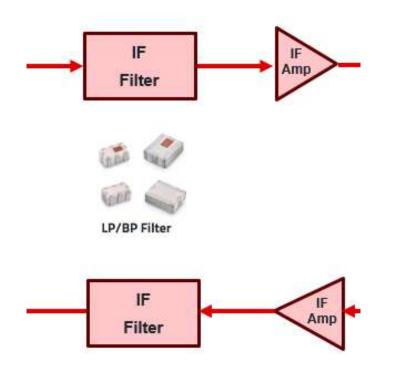

WE Portfolio

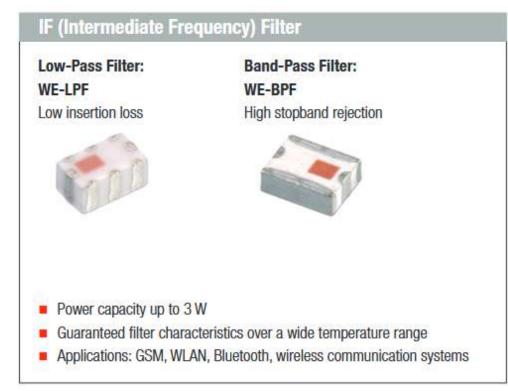
Characteristics


- High self resonant frequency
- Tight tolerances of 2% (1% on request) or ± 0.1 nH and small inductance values
- Outstanding temperature stability
- In high frequency circuit the inductance is very stable
- Small inductance values
- Recommended solder profile: Reflow
- Operating temperature: −40 °C to +125 °C



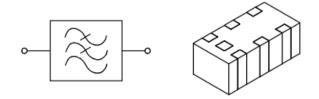
POWER AMPLIFIER

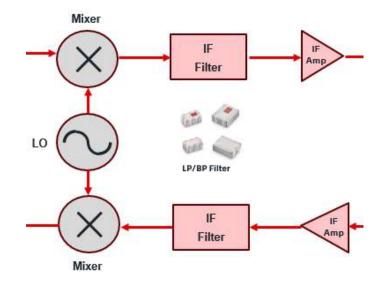

WE Portfolio

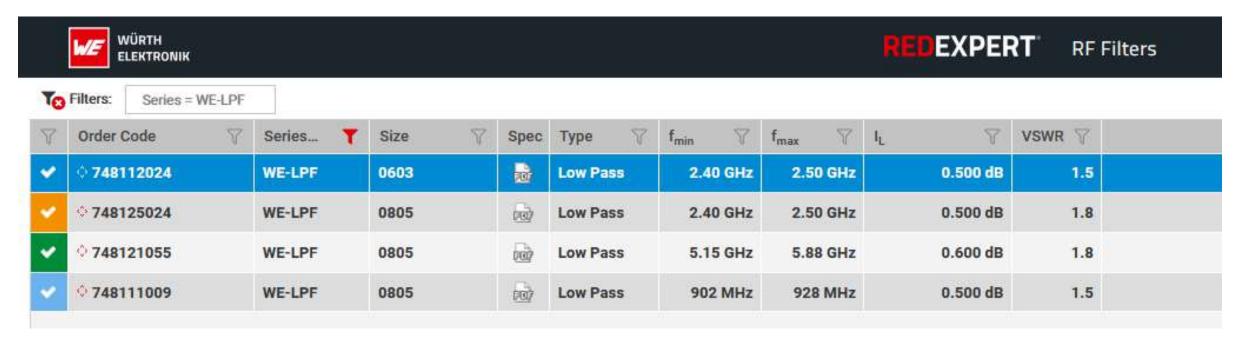


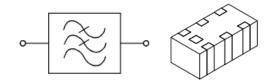
Up to 2.3 Amp for WE-KI HC, 4 Amp for WE-CAIR

Signal Filters

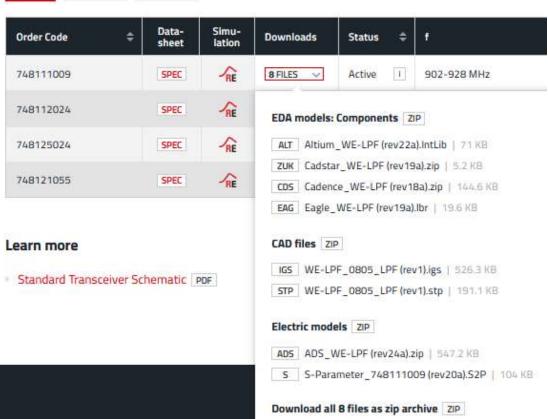

Common Mode Filter WE-CCMF

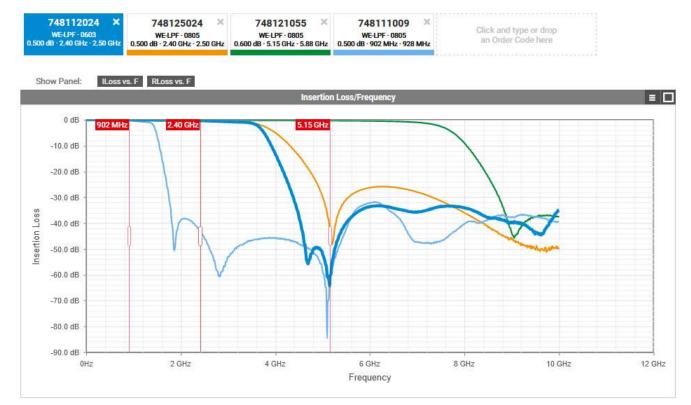



- Ultra-high-speed differential signal transmission
- LTCC based low-loss and highly reliable structure
- High thermal stability

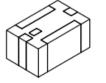


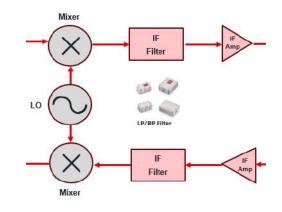
Signal Filters – Low Pass

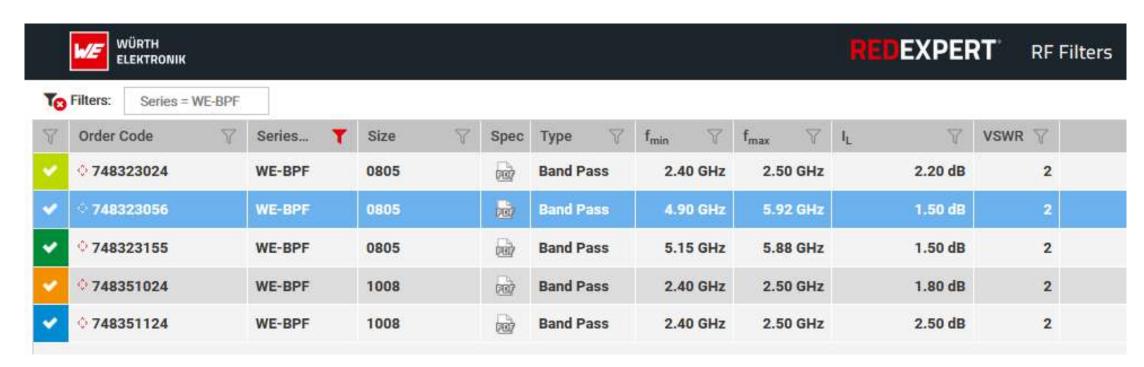




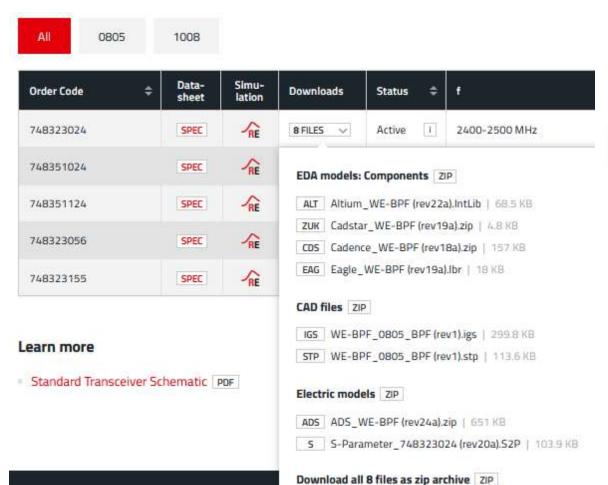
Signal Filters – Low Pass

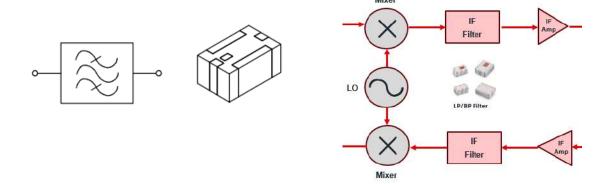






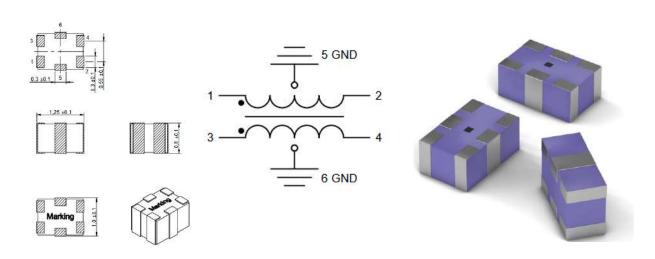
Signal Filters – Band Pass





Signal Filters – Band Pass

748351124


748351024

Click and type or drop an Order Code here

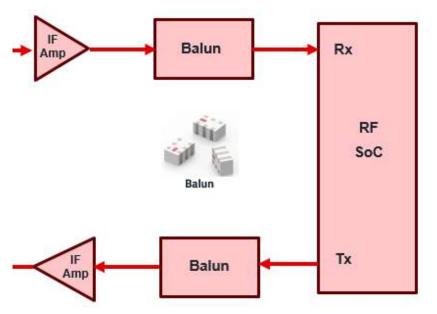
COMMON MODE CHOKE FILTERS

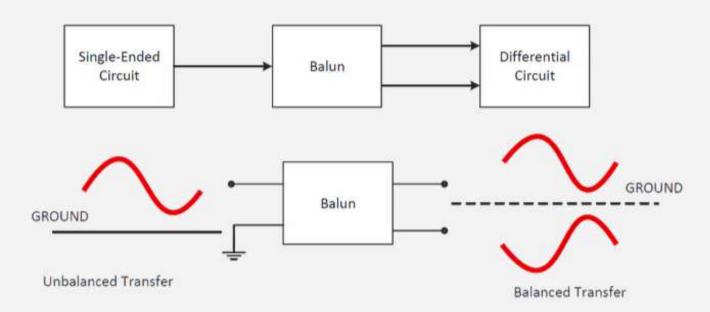
Characteristics

- Compact multilayer common mode choke/filter
- High common mode attenuation on WiFi frequencies (> 30 dB @ bandwidth)
- Ultra-high-speed differential signal transmission
- 12 GHz differential mode cutoff frequency
- LTCC based low-loss and highly reliable structure
- High thermal stability
- Recommended soldering: Reflow
- Operating temperature: -40 °C up to +85 °C

EXPERT

CM Chokes for Low Voltage and Data Lines


Y	Order Code	Series T	Size \forall	Spec	V _R ▽	z 🔻	L₀	IR 7	R _{DC} ♥	Winding Style 🕎	Length 7	Width 7	Height 🍸
1	○ 748020024	WE-CCMF	0504	100	5.00 V	2.20 Ω	245 pH	300 mA	2.00 Ω	Multilayer	1.25 mm	1.00 mm	0.800 mm
	○ 748030024	WE-CCMF	0504	007	5.00 V	2.00 Ω	245 pH	300 mA	2.00 Ω	Multilayer	1.25 mm	1.00 mm	0.800 mm
	♦ 748032455	WE-CCMF	0504	(10)	5.00 V	1.60 Ω	245 pH	300 mA	2.00 Ω	Multilayer	1.25 mm	1.00 mm	0.800 mm



V- Ciltore: Codes - WE COME

BALUN

Balanced - Unbalanced

BALUN

Converts from balanced signal (e.g. IN/OUT of IC) to unbalanced signal (e.g. Antenna) and vice versa

Electrical Properties:

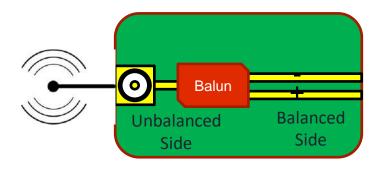
Properties		Test conditions	Value	Unit	Tol.
Frequency Range	f		4900 - 5900	MHz	
Insertion Loss	IL	4900 - 5900 MHz	1.2	dB	max.
Return Loss	RL	4900 - 5900 MHz	-10	dB	min.
VSWR		4900 - 5900 MHz	1.7		max.
Phase Imbalance		4900 - 5900 MHz	180	0	±10°
Amplitude imbalance		4900 - 5900 MHz	2	dB	max.
Unbalanced Impedance		4900 - 5900 MHz	50	Ω	
Balanced Impedance		4900 - 5900 MHz	100	Ω	

Working Frequency

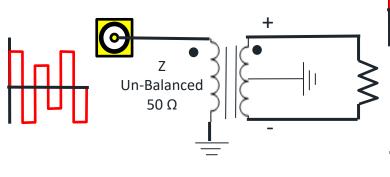
Attenuation of the useful signal.

The lower the better.

The ratio between reflected and incident in dB.

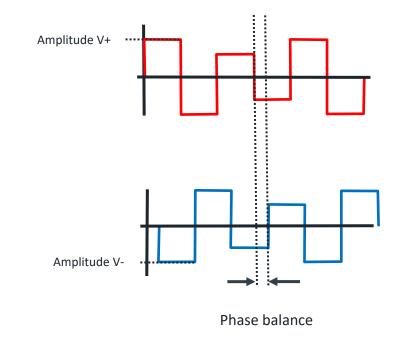

The higher the better.

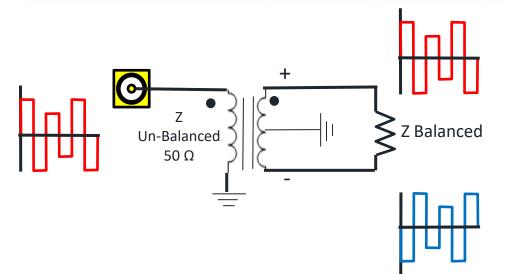
VSWR stands for Voltage Standing Wave Ratio


The lower the better.

Impedance of the line

Input and output




BALUN

Specifications

Electrical Properties:

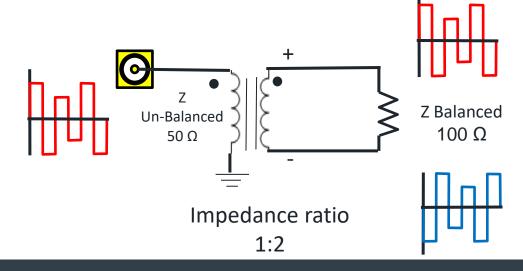
Properties	Test conditions		Value	Unit	Tol.
Frequency Range	f		2400 - 2500	MHz	
Insertion Loss	IL	2400 - 2500 MHz	1.2	dB	typ.
Insertion Loss	IL	2400 - 2500 MHz	2	dB	max.
VSWR		2400 - 2500 MHz	2		max.
Phase Imbalance		2400 - 2500 MHz	180	0	±10°
Amplitude imbalance		2400 - 2500 MHz	2	dB	max.
Unbalanced Impedance			50	Ω	typ.
Balanced Impedance			50	Ω	typ.

Phase balance

- is given as the measurement in degrees
- the difference in phase between the inverted output from the non-inverted output.
- Baluns with a phase balance closer to 0° (or 180°) are higher performing baluns.

Amplitude balance

- is a measure of the match of the output power magnitude between the two balanced ports.
- An Amplitude match closer to 0 dB is an indicator of a higher performance balun.



Specifications

Properties		Test conditions	Value	Unit	Tol.
Frequency Range	f		2400 - 2500	MHz	
Insertion Loss	IL	2400 - 2500 MHz	-lz 1.2 d		typ.
Insertion Loss	IL	2400 - 2500 MHz	2	dB	max.
VSWR		2400 - 2500 MHz	2		max.
Phase Imbalance		2400 - 2500 MHz	180	0	±10°
Amplitude imbalance		2400 - 2500 MHz	2	dB	max.
Unbalanced Impedance			50	Ω	typ.
Balanced Impedance			50	Ω	typ.

VSWR 💎	S ₂₁ - S ₃₁	∠S ₂₁ -∠S ₃₁	Z _{unbal}	Z_{bal}
1.70	2.00 dB	180°	50.0 Ω	100 Ω
1.70	2.00 dB	180°	50.0 Ω	100 Ω
2.00	2.00 dB	180°	50.0 Ω	100 Ω
1.70	2.00 dB	180°	50.0 Ω	50.0 Ω
2.00	2.00 dB	180°	50.0 Ω	100 Ω
2.45	1.50 dB	180°	50.0 Ω	100 Ω
2.00	2.00 dB	180°	50.0 Ω	50.0 Ω

WE SUPPORT

Free lifetime refill for WE design kits

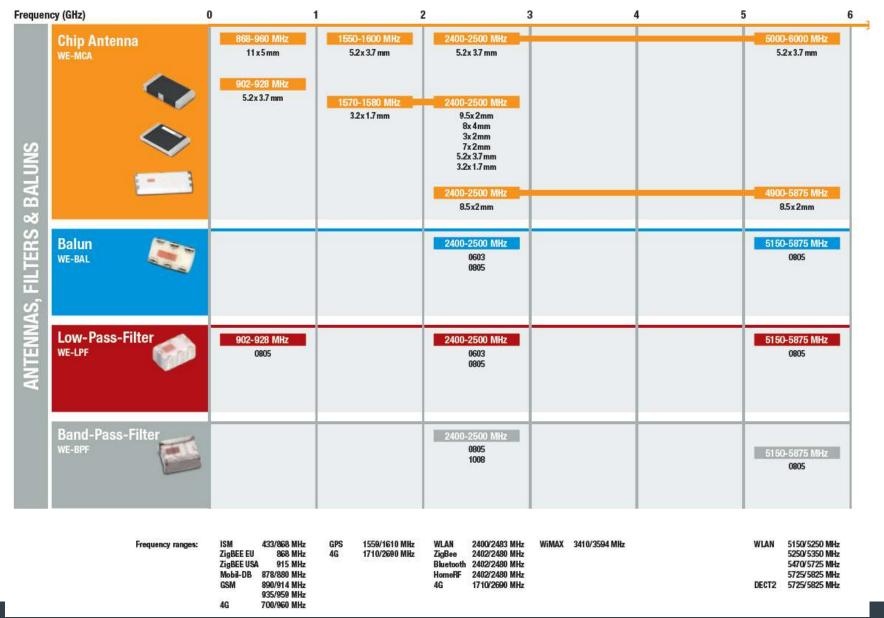
Design Kit Antenna Matching

Order Code 748001

Antenna Matching and Characterization Support

Würth Elektronik is offering not just the components for a matched Antenna Network, we can also support in the process of designing.

Learn more

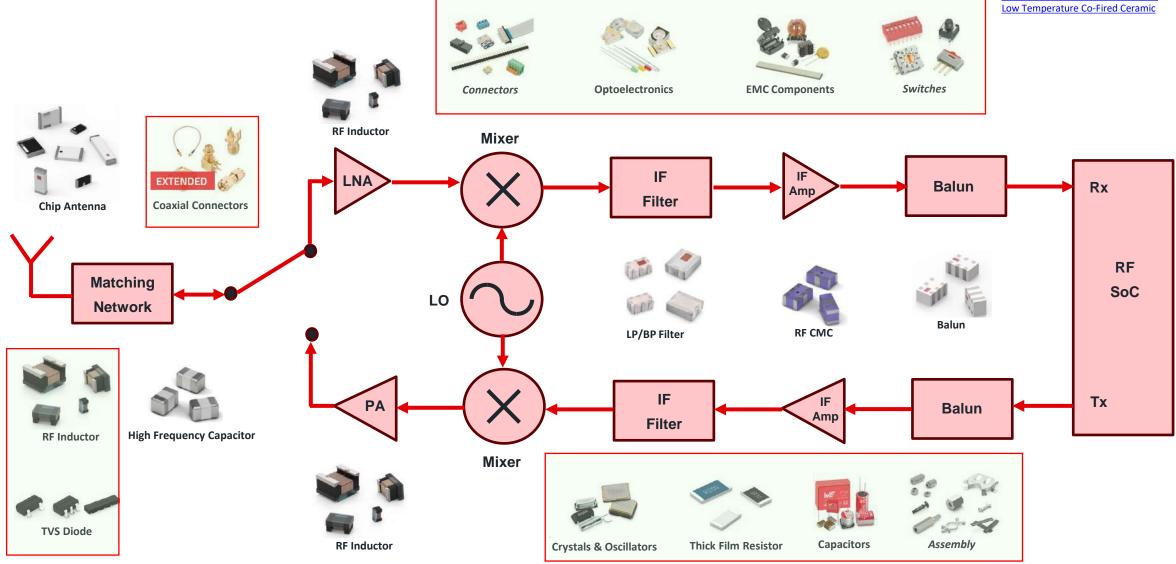


Characteristics

- Includes components like Chip antennas, RF inductors, RF capacitors and coaxial cable working up to 18 GHz
- Complete solution for antenna selection and matching needs
- Ability to accommodate high frequency designs and the associated parasitics
- Antenna frequency range: 868 5800 MHz
- Inductance: 1.0 100 nH
- Capacitance: 0.3 27 pF

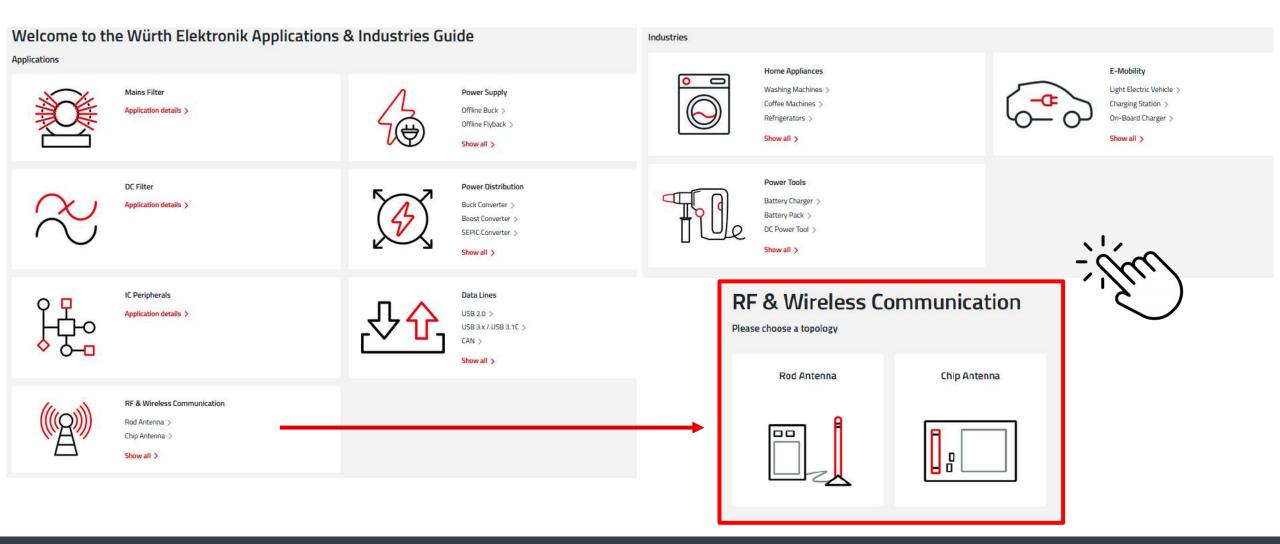
RF PRODUCT FINDER

ADDITIONAL PARTS TO OFFER


WE Technical References:

eiSmart Product Guide

IC Reference Designs


Würth Elektronik Application Guide.

Low Temperature Co-Fired Ceramic

WE SUPPORT

www.we-online.com

WE SUPPORT

More Than You Expect

SAY YES TO OUR FAST AND COST-FREE DESIGN-IN SUPPORT

WE TAILOR THE QUANTITIES TO YOUR NEEDS

ONLINE DESIGN PLATFORM FOR COMPONENT SELECTION & SIMULATION

COMPONENT LIBRARIES –
MAKING HARDWARE INTEGRATION EASY

ALL CATALOGUE PRODUCTS AVAILABLE EX STOCK

SEMINARS & WEBINARS

APPLICATION NOTES

TOTAL QUALITY MANAGEMENT

REDEXPERT

WE Component selection and Simulation Tool

QUESTION #2

LTCC stands for? And name at least two advantages.

LTCC – Low Temperature Co-fired Ceramic

- Small size.
- Low losses.
- High reliability.
- Stable temperature behavior.

THANK YOU

Auckland: Tasi.Samu@we-online.com

Christchurch: Mark.Toi@we-online.com

FAE: Carpov.Pascual@we-online.com

