

Do You Know Your Component? Field behaviour of different passive components

Do You Know Your Components?

Do You Know Your Components?

- Setup of input filter according to the data sheet
- Pi filter with downstream coil
 - Ceramic capacitors => WCAP-CSGP
 - Chip bead ferrite => WE-CBF
 - Filter inductor => WE-LQS

Ultralow EMI 5V 2.5A Step-Down Converter

Let's Talk about Ferrites

Ferrite Beads

Electrical Properties:

Properties		Test conditions	Value	Unit	Tol.
Impedance @ 100 MHz	Z	100 MHz	600	Ω	±25%
Impedance @ 1 GHz	Z	1 GHz	450	Ω	typ.
Maximum Impedance	Zmax	350 MHz	900	Ω	typ.
Rated Current 1	I _{R 1}	ΔT = 20 K	200	mA	max.
Rated Current 2	I _{R2}	$\Delta T = 40 \text{ K}$	500	mA	max.
DC Resistance	R _{DC}	@ 20 °C	0.27	Ω	typ.
DC Resistance	R _{DC}	@ 20 °C	0.9	Ω	max.
Туре	Wide Band				

Typical Impedance Characteristics:

Ferrite Beads – Characteristics

Which area should you consider?

Inductive

Energy Storage

Resistive

- Absorbs impeded noise energy
- Filter usage

Capacitive

Passes AC, Blocks DC

Ferrite beads main function is to dissipate the noise energy as heat.

Let's Talk about Capacitors

Capacitors – MLCC

Electrical Properties:

Properties		Test conditions	Value	Unit	Tol.
Capacitance	С	1 ±0.2 V _{RMS} , 1 kHz ±10% @25 °C	1	μF	±10%
Rated Voltage	V _R		50	V (DC)	max.
Dissipation Factor	DF	1 ±0.2 V _{RMS} , 1 kHz ±10% @25 °C	2.5	%	max.
Insulation Resistance	R _{ISO}	Apply V _R for 120 s max.	0.5	GΩ	min.

Precondition for Class II MLCC measurement: Apply a preheat treatment @150 \pm 10 °C for 1 hour. The measurement should be applied after 24 \pm 2 hrs the part was stored under ambient conditions. There is not any precondition necessary for Class I MLCC.

General Information:

	General Purpose MLCC		
Ceramic Type	X7R Class II		
Temperature Coefficient	± 15 % max.		
Operating Temperature -55 up to +125 °C			
Storage Conditions (in original packaging)	5 °C up to + 35 °C; 10 % up to 75 % RH		
Moisture Sensitivity Level (MSL)	1		
Dielectric Strength	5 sec. @250 % V _R ; Charge & Discharge Current <50 mA		
Test conditions of Electrical Pr	operties: +20 °C, 35 % RH if not specified differently		
FIT acco	rding to separate documentation		

Capacitors – MLCC

Class 1 (e.g.: NP0 or COG -> titanium oxide)

- Smaller relative permittivity εr => lower capacitance
- Depending on the type no temperature dependence (e.g. COG / NP0)
- Otherwise there are no derating
- They offer stable / precise C-values
- For applications where fixed / stable capacitance value is needed

Class 2 (e.g.: X7R, X5R, Y5V -> barium titanate)

- Higher relative permittivity εr => higher capacitance
- Non-linear temperature dependence (manufacturer specific due to material mix / design)
- DC bias and aging behavior
- The capacitance value in the DB is not explicitly available in the application
- Manufacturer's data must be checked in order to estimate the resulting capacitance

Ferrite Beads - Real Conditions

Equivalent circuit

Material

- Temperature
- Magnetic
- DC bias
 - Reduce inductance
 - Shifted SRF

Material Curves (Typical)

Z vs f vs IDC

Temperature Influence

- Magnetic field is temperature dependent
- Curie temperature depends on material
- CT reached, permeability of ferrite material is lost

Ferrite Beads - Temperature Influence

- Temperature behaviour according to material
 - Different levels of impedance drop as temperature increase
 - Huge impedance drop over curie temperature

Magnetic Influence

Magnetic Influence - Setup

Specs

- Separated DC & RF ports
- Various DUTs
- Up to 50V & 5A
- From 50kHz to 2 GHz
- Any RF-source & analyzer

Setup

- Test fixture as "double LISN"
- Test boards with DUT

Magnetic Influence - Setup

Capacitors – MLCC Real Conditions

Equivalent circuit

- Voltage
 - Capacitance loss
 - Shifted SRF
- Temperature
 - De-aging
- Time
 - Capacitance loss over time

Capacitors – MLCC Temperature

1. Zeichen		2. Zeichen		3. Zeichen		
Buchstabe	untere Temperaturgrenze	Nummer	obere Temperaturgrenze	Buchstabe	Kapazitätsänderung über den zulässigen Temperaturbereich	
х	-55 °C	2	+45 °C	A	±1,0 %	
Y	~30 °C	4	+65 °C	В	±1,5 %	
z	+10 °C	5	+85 °C	С	±2,2 %	
		6	+105 °C	D	+3,3 %	
		7	+125 °C	E	+4,7 %	
		8	+150 °C	F	+7,5 %	
		9	+200 °C	Р	±10 %	
				R	±15 %	
				S	±22 %	
				т	+22 / -33 %	
				U	+22 / -56 %	
				v	+22/-82%	

Capacitors – MLCC Aging

Capacitors – MLCC DC Bias

885012208066 => 2.2µF / 25V / X7R / 1206

ΔC@25V = 50% = 1.1µF

Capacitors – MLCC DC Bias

885012208066 => 2.2µF / 25V / X7R / 1206

ΔC@25V = 50% = 1.1µF

Capacitors – MLCC DC Bias

• Requirements:

- For capacitors
- Highly precise measurement
- Separated DC & RF ports
- Up to 10.5 GHz
- Solution:
 - Same test jig as current meas.
 - Other test boards with capacitor

28.10.2021 | Joanne Wu & Frank Puhane | Do you know your components?

Input Filter for LT8610

- Simulation of different filters specification
- Relative to 50Ω source and sink impedance
 - $0 \Rightarrow$ Ideal components 1 => With parasitic effects $2 \Rightarrow DC Bias MLCC$ 3 => DC bias MLCC + current dependence ferrite and coil
- REDEXPERT:
 - WCAP-CSGP: <u>http://we-online.com/re/48VNPluS6zN</u>
 - WE-CBF: <u>http://we-online.com/re/48VQLRAE</u>
 - WE-LQS <u>http://we-online.com/re/48VOVuba</u>

BF1206 WE

Veraitanisasas

- 147,111

.param Rload=50 .param Rsource=50 .ac dec 100 150e3 1e9

11

Input Filter for LT8610

more than you expect

Field behavior of the Input Filter – Demo 1

		Imput_Filter_Setup* - Bode Analyzer Suite	¢	0 0 - # ×
vior	F2e Home Measurement View Cursor New Sawe Sawe Communicus Single Single Image: American Indexton Image: American	Point Competitioner Competitioner		
	Frequency Severe I Hard Frequency Trace 1		Trace 1	1 ×
	Start frequency 50 kHz 2 Current 2 26.7 MHz -79.686 dB 0		Measurement	Gain •
	Stop Requency 50 MHz Delta C2-C1 11.1 MHz 13.576 dB		Display	Moasurement •
	Centur 25.025 MHz 20		Format	Magnitude (dll) 🔹
	Spon 49.95 MHz		Ymai	20 dB 💲
	Get hum yours		Vain	- 100 dB 🌻
$n \cap 1$	Sweep Linear Logarithmic 0		🗄 🗖 Trace 2	
	Number of opiets 1601 •		Meanurement	Reflection
	-10		Display	Measurement •
	Level Constant 💶 Variable 🦉 20		Format	Magnitude (dB)
	Source level 0 dBm 🛊 🙀		Y _{mm}	10 88 💲
	Attenuator Receiver 1 Receiver 2		¥	-50 iB 🗘
	Transmission 20 dll • 20 dll • 40			
	Nefletion 10-00 • 100 00 •			
	Receiver bandwidth 1 kity + 8			
	-70			
	-80 - 1	Line and a Little with the second statement of the second of the		
	العراجية المتعادين المتعادية والمتعادية والمتعادية والمتعادية والمتعادية والمتعادية والمتعادية والمتعادية والم	and a faith of the state of the second s		
	100x	1M 10M		
1	= wumm	rrequency (nz)	Meas	utement + new memory
		Auto off Receiver 1 Receiver 2		L 2021-10-18 PG302H 🖌 🚞
	🛋 😸 🔚 🔚 🍪 Atomuhr Osline - g. 📀 💷 Ingul	LFilm_Setup*	~ *	LS 20/10/2021
1200				
	A REAL PROPERTY AND A REAL			
- marker				
set of the set				
1. 1.				

more than you expect

Field behavior of the Input Filter – Demo 2

more than you expect

Field behavior of the Input Filter – Demo 3

You Know Your Components!

|≡ □

Capacitors – Aluminum Electrolytic

- Different electrode material
 - Aluminum
 - Tantal
 - Niob
- Different specification
 - Wet
 - Solid

Time [sec]

-----Average

Dielectric (Oxide layer)

Electrolyte

100

Separator Paper

120

Leakage Current over time 1000 Leakage current [µA] Anode (Aluminum foil) 100 10 0,1 20 40 60 80 0

Cross-section low voltage anode foil

Capacitors – Aluminum Electrolytic

Leackage Current over time

Temperature influence

- Operating temperature is important
- Going below the datasheet values lead to dramatic results
- Different electrolyte are used

Summary

- Datasheet definitions are generic definition
- Difference between datasheets
 - Check the different vendors
- Extended information available
 - Visit our Redexpert for more information
 - Simulation models available

Ferrites

- Temperature
- Magnetic
- DC bias
 - Reduce inductance
 - Shifted SRF

- Capacitors
 - Voltage (MLCC)
 - Capacitance loss
 - Shifted SRF
 - Temperature
 - De-aging (MLCC)
 - Capacitance change
 - Time
 - Capacitance loss over time

Thank You for your attendance

