DIGITAL WE DAYS 2024

WE'VE GOT THE POWER, THE POE POWER

WURTH ELEKTRONIK MORE THAN YOU EXPECT

AGENDA

- Concept and Architecture
 - Concept
 - Architecture
 - Signal and Power Flow
- PoE Options and Solutions
- Practical Design Example PoE PD

CONCEPT AND ARCHITECTURE

Power over Ethernet

Technology for passing electrical power along data lines of wired Ethernet LANs (up to 100m cable) Applicable Standard IEEE 802.3

CONCEPT

Types

PoE Standard	IEEE 802.3af Type 1	IEEE 802.3at Type 2	IEEE 802.3bt Type 3	IEEE 802.3bt Type 4
Max Power Delivered by PSE	15.4W	30W	60W	100W
Power Available at PD	12.95W	25.5W	51W	71W
Max Current	350mA	600mA	600mA	960mA
Twisted-pair used	2-Pair	2-Pair	4-Pair	4-Pair

Power Flow PSE -> PD

Power Path 1

Power Path 2

ARCHITECTURE IEEE802.3.BT

2 Power Paths

Source Microsemi

Powered Device

10

POE OPTIONS & SOLUTIONS

TYPES AND CLASSIFICATION

Class Number	PSE Output Power [W]	PD Input Power [W]	PD Type	Notes
0	15.4	12.95	1	IEEE802.3af
1	4	3.84	1	
2	7	6.49	1	
3	15.4	12.95	1	
4	30	25.5	2	IEEE802.3at
5	45	40	3	IEEE802.3bt
6	60	51	3	
7	75	62	4	
8	90	73	4	

TYPES AND CLASSIFICATION

PD REQUESTED				RESIST	OR (1%)
CLASS	PD REQUESTED POWER	PD TYPE	NOMINAL CLASS CURRENT	R _{CLS}	R _{CLS} ++
0	13W	Type 1	2.5mA	1.00kΩ	Open
1	3.84W	Type 1 or 3	10.5mA	150Ω	Open
2	6.49W	Type 1 or 3	18.5mA	80.6Ω	Open
3	13W	Type 1 or 3	28mA	52.3Ω	Open
4	25.5W	Type 2 or 3	40mA	35.7Ω	Open
5	40W	Туре З	40mA/2.5mA	1.00kΩ	37.4Ω
6	51W	Туре З	40mA/10.5mA	150Ω	47.5Ω
7	62W	Туре 4	40mA/18.5mA	80.6Ω	64.9Ω
8	71.3W	Туре 4	40mA/28mA	52.3Ω	118Ω

DISCRETE SOLUTION

Example

- Two ICs
 - One for the PSE<->PD hand shake (interface controller)
 - Second for control of isolated DC/DC converter.
- Gives more flexibility for future re-design in case of obsolescence/EoL.
- Gives more options / alternatives for either IC.

IEEE 802.3bt Single-Signature Powered Device Interface

INTEGRATED SOLUTION

Example

- One IC including both functionality:
 - PSE<->PD hand shake (interface controller)
 - DC/DC converter controller
- Less parts. Smaller pcb area
- Easier/better layout and tracking
- Ability to add extra filtering

MODULE SOLUTION

Example

- Module Includes:
 - PSE<->PD hand shake (interface controller)
 - DC/DC converter controller
 - DC/DC isolated converter
- Less parts. Smaller pcb area
- Easier/better layout and tracking
- Faster time to market.
- However:
 - No access to the Power Converter Input to introduce the filtering after the PoE Signature/Class communications.
 - The filter capacitance is the issue here as indicated in the 2012 revision of the IEEE 802.3 standard.
 - This limits C to 150nF.
 - No guarantee of using up to 10uF (may accept or reject). Ref sections 33.2.5.3 & 33.2.5.4 on PD detection and rejection criteria.

PRACTICAL DESIGN EXAMPLE POE PD

POWER CONVERTER DESIGN PROCESS / GUIDELINES

Introduction

- Requirements Capture
 - Steady State (ss) and Dynamic response
 - Power Quality, EMI, Safety, ...etc.
 - Abnormal Operating conditions, Fault Tolerance, ...etc.
 - Application Specific Requirements (Isolation, Power, Protection, ..etc.)
- Topology Selection
 - Electrical Specifications
 - Other constraints (Size, Cost, ...etc.)
 - 1) Full Converter Stage Design
 - Schematic capture, Mathematical analysis and calculations, Simulation, Prototyping and Optimisation.
 - Thermal Analysis and Stress Analysis.
 - Layout and Tracking
 - Functional Testing, Power Quality, Loop Measurements and Stabilisation.
 - FMEA, ...etc.

DESIGN PROCESS / GUIDELINES

Introduction

- 2) Base DC/DC Converter Design On:
 - IC Reference Design / Evaluation Board / Kit

CAUTIONs	MUSTs
Design Specs do not match your requirements	Maintain Functionality to your Specs
Different ss /dynamic loading requirements	Perform Thermal Management / Analysis to your requirements
No EMI Considerations / Testing	Maintain the reliability / quality to the product's Warrantee / Brand Name
Ref Designs Only Work Under Specific Load, Line and Temperature Conditions	

3) A Power Converter Module

Customer Design Requirements Capture

- PoE PD 60W Type 3 / 4
- IEEE802.3.bt
- 1500V Functional Isolation
- Vin= 36V-57V
- Vout = 12V
- lout = 5A
- Required Efficiency > 90%
- Common and differential EMC filtering
- <5% output ripple
- <65DegC max board/component Temperature (based on an Ambient of 25DegC)

Design Architecture

- Discrete Solution
- Synchronous rectified Flyback Topology (Efficiency and Temperature requirements)
- Use LT3748 Chipset LT3748 (primary side regulation IC)
- Base design on Reference Design (<u>DC1961AF</u>)
- New Power Transformer (Efficiency and Temperature requirements)
- To maintain efficiency requirement:
 - Use FETs for the input Bridge Rectifier
 - Driver LT4321
- PSE/PD Handshake Chip (<u>LT4294</u>)
- Front end Reference Design (<u>DC2583A</u>)
- Input LC Differential Mode Filter (EMC requirement)
- Input Common Mode Filter (EMC Requirement)
- Output LC Filter (Ripple requirement)

Design Verification/Modifications

- LT Spice Simulation of DC1961AF Ref Design
- LT 3748 Datasheet Review and Design modification:
 - New Power Transformer design and calculations
 - Reset UVLO thresholds
 - Dynamic response improvements
 - Output OVP under light load
 - Clamp Snubber re-design
 - Current sense filter design
 - Implementation of input and output LC DM filter
 - Implementation of input CMC Filter.
 - Alternatives to Main and Sync FETs (lower RDS on)
- Modify Evaluation Board and Test
- Create Initial Prototype Hardware Test and Verify

DC1961AF LT SPICE SIMULATION

POWER TRANSFORMER

• Ref Design uses EFD20 Transformer [spec similar to 750310644]

750310644

ELECTRICAL SPECIFICATIONS @ 25°C unless otherwise noted:

PARAMETER		TEST CONDITIONS	VALUE
D.C. RESISTANCE	1-4	tie(1+2, 3+4), @20°C	0.039 ohms max.
D.C. RESISTANCE	12-7	tie(7+8+9, 10+11+12), @20°C	0.0085 ohms max.
D.C. RESISTANCE	5-6	@20*C	0.230 ohms max.
INDUCTANCE	1-4	tie(1+2, 3+4), 200kHz, 100mVAC, Ls	20.5uH ±5%
LEAKAGE INDUCTANCE	1-4	tie(1+2, 3+4, 7 thru 12), 200kHz, 100mVAC, Ls	1.0uH max.
DIELECTRIC	1-12	tie(1+2, 10+11+12), 1800VAC, 1 second	2
DIELECTRIC	1-12	tie(1+2+5, 10+11+12), 1800VAC, 1 second	-
TURNS RATIO		(2-4):(12-7) tie(7+8+9, 10+11+12),	2.67:1, ±3%
TURNS RATIO		(1-3):(12-7) tie(7+8+9, 10+11+12),	2.67:1, ±3%
TURNS RATIO		(5-6):(12-7) tie(7+8+9, 10+11+12),	1.17:1, ±3%
	PARAMETER D.C. RESISTANCE D.C. RESISTANCE D.C. RESISTANCE INDUCTANCE INDUCTANCE LEAKAGE INDUCTANCE DIELECTRIC DIELECTRIC TURNS RATIO TURNS RATIO	PARAMETER D.C. RESISTANCE 1-4 D.C. RESISTANCE 12-7 D.C. RESISTANCE 5-6 INDUCTANCE 1-4 LEAKAGE INDUCTANCE 1-4 DIELECTRIC 1-12 DIELECTRIC 1-12 TURNS RATIO TURNS RATIO TURNS RATIO TURNS RATIO	PARAMETER TEST CONDITIONS D.C. RESISTANCE 1-4 tie(1+2, 3+4), @20°C D.C. RESISTANCE 12-7 tie(7+8+9, 10+11+12), @20°C D.C. RESISTANCE 5-6 @20°C INDUCTANCE 1-4 tie(1+2, 3+4), 200kHz, 1000WAC, Ls INDUCTANCE 1-4 tie(1+2, 3+4), 200kHz, 1000WAC, Ls DIELECTRIC 1-12 tie(1+2, 3+4, 7 thru 12), 200kHz, 1000WAC, Ls DIELECTRIC 1-12 tie(1+2, 10+11+12), 1800WAC, 1 second DIELECTRIC 1-12 tie(1+2+5, 10+11+12), 1800WAC, 1 second TURNS RATIO (2-4):(12-7) tie(7+8+9, 10+11+12), 1400WAC, 1 second TURNS RATIO tie(7+8+9, 10+11+12), 1400WAC, 1 second TURNS RATIO tie(7+8+9, 10+11+12), 1400WAC, 1 second TURNS RATIO tie(7+8+9, 10+11+12), 1400WAC, 1400W

• Temperature rise 74.1DegC at 48Vin/12Vout/5Aout

• Decision to go to a bigger EFD25 Core 750319021

Properties		Test conditions	Value	Unit	Tol.
Inductance	L	N1/10 kHz/100 mV <	22	μH	±10%
Turns Ratio	n	N1:N2:N3	2.4:1:1		
Saturation Current	ISAT	N1/IΔL/LI < 20 %	10.8	A	typ.
DC Resistance 1	R _{DC1}	N1/20 °C	18	mΩ	тах.
DC Resistance 2	R _{DC2}	N2/20 °C	8	mΩ	тах.
DC Resistance 3	R _{DC3}	N3/20 °C	125	mΩ	±10%
Leakage Inductance	Ls	100 kHz/ 100 mV	0.75	μH	тах.
Insulation Test Voltage	VT	N1,3 => N2	1500	V.(AC)	

750310021

Schematic:

• BUT IS IT GOING TO WORK?

POWER TRANSFORMER

- Let's check by doing Transformer Calculations......
 DIFFICULT.
- WHY?
 - LT3748 is a Boundary Mode Controller
 - Switching frequency changes with Load/Line conditions
 - Two options:
 - Use datasheet calculation:
 $$\begin{split} & L_{PRI} \leq V_{IN(MIN)} \bullet (V_{OUT} + V_{F(DIODE)}) \bullet N_{PS} / (f_{SW(MIN)} \bullet I_{LIM} \bullet \\ & ((V_{OUT} + V_{F(DIODE)}) \bullet N_{PS} + V_{IN(MIN)})) \end{split}$$
 - Use LT Spice Simulation
 - Better and quicker and more accurate provided good models

POWER TRANSFORMER

• Let's check by doing Transformer Calculations......

				WE	Flyt	back Tr	ansfor	mer Se	electio	n
WE Transformer DS Parameters						Design Requirements				
Part Number		750319021				Vin min	3	6	V	
	2 20	E-05	н			Vin_nom	4	8	v	
Nn	2.20	4				Vin_nom	5	7	v	
Ne	-	1				Dout max	6	D	Ŵ	
Nauv		1				Pout min	1	0	w	
Vout	1	2	V			Efficiency	0.9	25	**	_
Voui In est	10	2	V				0.0	,5 0	V	
ip_sat		0.0	A			VU VE Die de		2	V	
IO_OC	×	0 \10	A			VF DIODE	0.	2	V	
RUC_P	0.0	18	Ω			I	8.208	:+04	HZ	2
NUC_S	0.0	000	12							
					/					
			Res	uits						
		Pout max				Pout min				
	Vin min	Vin_nom	Vin_max	Vin	n min	Vin_nom	Vin_max			
Operating Mode:	DCM	DCM	DCM	DC	CM		DCM			
D	0.4433	0.33247	0.27998	0	.18098	0.1357321	0.1143			
D2	0.5025	0.5025	0.5025	0	.20515	0.2051456	0.20515			
D3	0.0542	0.16502	0.21752	0	.61388	0.6591223	0.68055			
lp_dc	1.96078	1.47059	1.23839		0.3268	0.245098	0.2064			5
∆lp	8.84633	8.84633	8.84633		3.6115	3.6114971	3.6115			
lp_pk	8.84633	8.84633	8.84633		3.6115	3.6114971	3.6115			_
lp_rms	3.40056	2.94497	2.70249	0	.88703	0.7681887	0.70494			
ls_pk	19.5742	19.5742	19.5742	7	.99113	7.9911259	7.99113			_
ls_rms	8.01109	8.01109	8.01109	2	.08967	2.0896735	2.08967			
Vaux	12				12					
lout	5			0	.83333					
Rdclosses	0.72157									

UVLO THRESHOLDS

- VIN(UVLO, FALLING) = 1.223V (R1+R2)/R2 ٠
- VIN(UVLO,RISING) = 1.223V •[(R1+R2)/R2] + 2.4µA •R1

Vin

Min Flyback Operating Input Voltage ٠

Similarly; Too small a Cc value can result in an unstable loop and with too large a Cc value the transient performance will suffer.
 (>1nF)

OVP/Snubber Clamp/Current Sense Filter

- Output OVP under light load
 - Minimum Load at Light load conditions
 - Clamp the output voltage (OVP connected loads)
 - <u>WE-TVSP</u>
- Clamp Snubber re-design
 - Clamp the Vds Voltage Spike and protect across MOSFET DS junction
 - Damp the ringing of Transformer Llk and Main FET Cds
 - <u>WE-TVSP</u>
- Current sense filter design
 - Implement a LP RC Filter (LEB)

Input CM and DM filter

• Conducted and radiated emissions, Common and differential Noise.

Input CM filter

- Common mode Filter design:
 - Input Current = Pout/(ηVin)= 60/(32x0.9) = 2.1A
 - Fs = 80kHz min -> 300kHz max
 - CMC Redexpert selection (Max insertion loss): <u>https://we-online.com/re/5qQVnnlg</u>

Frequency

Common Mode Attenuation @ 50Ω

Input CM filter Insertion loss

Input DM filter

- Differential mode Filter design:
 - Input Current = $Pout/(\eta Vin) = 60/(32x0.9) = 2.1A$
 - Fs = 80kHz min -> 300kHz max
 - Inductor Redexpert selection (Efficiency & Size): <u>https://we-online.com/re/5qQWs8oz</u>
 - WE-XHMI <u>https://www.we-online.com/en/components/products/datasheet/74439358100.pdf</u>
 - Capacitor Selection (Max insertion loss & Size)
 - Low ESR/Profile Aluminum Polymer and MLCCs

Input DM filter

Output LC Filter

- Differential mode Filter design:
 - Output Current = 5A
 - Fs = 80kHz min -> 300kHz max
 - Ripple rejection
 - Inductor Redexpert selection (Efficiency & Size): <u>https://we-online.com/re/5qQYfWkg</u>
 - WE-LHMI <u>https://www.we-online.com/en/components/products/datasheet/74437349010.pdf</u>
 - Capacitor Selection (Max insertion loss & Size)
 - Low ESR/Profile Aluminum Polymer and MLCCs

Modify Evaluation Board and Test

- Evaluation Boards for both Handshake and Flyback converter.
- Boards Modified as discussed
- Initial Functional testing
 - Load/Line regulation
 - Temperature
 - Dynamic Load Step
 - UVLO Thresholds

MODIFY EVALUATION BOARD AND TEST SUMMARY

- Regulation is fine across the load and line spec conditions
- Efficiency is 94% at full load (60W) and min Vin.
- Thermal performance is very good (max board temperature 42DegC).
- Load Transient is good. Can be improved further.

Create Initial Prototype Hardware Test and Verify

- Ongoing Progress
- Testing at our Manchester Office Lab Facility
- Full Functional Testing:
 - Regulation, Dynamic and Thermal performance
- Signal Integrity and noise immunity:
 - Conducted Emissions debugging
 - Radiated Emissions investigation

POE PD FLYBACK CONVERTER DESIGN SIMULATION

POE PD FLYBACK CONVERTER DESIGN SIMULATION

41 WE'VE GOT THE POWER, THE POE POWER - DIGITAL WE DAYS 2024 EXTERNAL | M ALALAMI 22 APR 2024

POE PD FLYBACK CONVERTER DESIGN SIMULATION

ETHERNET – POE – WE SOLUTIONS

<u>Signal & Communications | Passive Components | Würth Elektronik Product Catalog (We-online.Com)</u>

We are here for you now! Ask us directly via our chat or via E-Mail.

digital-we-days@we-online.com Mohamed.Al-Alami@we-online.com

