

EFFICIENT EMI FILTERING OF COMMON AND DIFFERENTIAL MODE NOISE

Lorandt Fölkel M.Eng. FAE & BDM at Würth Elektronik eiSos

WURTH ELEKTRONIK MORE THAN YOU EXPECT

TODAY'S AGENDA

- Flyback DC/DC converter as noise source
- Design optimization
- Common mode and Differential mode filtering
- EMC Lab results

FLYBACK EMI - SCHEMATIC- V2022.1

FLYBACK EMI - DEMONSTRATION BOARD - V2022.1 - MODIFICATION

4 EFFICIENT EMC & POWER CONVERTER DESIGN PUBLIC | Lorandt Fölkel | 01.01.2024

FLYBACK EMI - DEMONSTRATION BOARD - V2022.1

Тор

FLYBACK EMI - DEMONSTRATION BOARD - V2022.1

Bottom

TEST#3-7: V2022.1 WITH MODIFICATION - TOTAL CONDUCTED EMISSIONS - LINE

Combined

Namec	Description	
Test#3	Reference (no improvement)	
Test#4	Test#3 + RCD-snubber	
Test#5	Test#4 + primary to secondary y-capacitors	
Test#6	Test#5 + CMC and y-capacitors (CM filter)	
Test#7	Test#6 + x-capacitor (DM filter)	

TEST#3-7: V2022.1 WITH MODIFICATION - CONDUCTED EMISSIONS - COMMON MODE

Common Mode

Name	Description	
Test#3	Reference (no improvement)	
Test#4	Test#3 + RCD-snubber	
Test#5	Test#4 + primary to secondary y-capacitors	
Test#6	Test#5 + CMC and y-capacitors (CM filter)	
Test#7	Test#6 + x-capacitor (DM filter)	

TEST#3-7: V2022.1 WITH MODIFICATION - CONDUCTED EMISSIONS - DIFFERENTIAL MODE

Name	Description	
Test#3	Reference (no improvement)	
Test#4	Test#3 + RCD-snubber	
Test#5	Test#4 + primary to secondary y-capacitors	
Test#6	Test#5 + CMC and y-capacitors (CM filter)	
Test#7	Test#6 + x-capacitor (DM filter)	

Differential Mode

FLYBACK EMI - DEMONSTRATION BOARD - V2022.1 - MODIFICATION

Background

There is no short noise return path from y-capacitor C15 to CM-Noise Source (Switch node, secondary side)

CM-noise bypasses the filter and couples into the filter (parasitic loop antenna)

CM noise imbalance occurs (CM/DM conversion)

FLYBACK EMI - SCHEMATIC- V2023.1

FLYBACK EMI - DEMONSTRATION BOARD - V2023.1

FLYBACK EMI - DEMONSTRATION BOARD - V2023.1

Bottom

TEST#3-7: V2023.1 - TOTAL CONDUCTED EMISSIONS - LINE

Combined

Namec	Description	
Test#3	Reference (no improvement)	
Test#4	Test#3 + RCD-snubber	
Test#5	Test#4 + primary to secondary y-capacitors	
Test#6	Test#5 + CMC and y-capacitors (CM filter)	
Test#7	Test#6 + x-capacitor (DM filter)	

TEST#3-7: V2023.1 - CONDUCTED EMISSIONS - COMMON MODE

Common Mode

Name	Description	
Test#3	Reference (no improvement)	
Test#4	Test#3 + RCD-snubber	
Test#5	Test#4 + primary to secondary y-capacitors	
Test#6	Test#5 + CMC and y-capacitors (CM filter)	
Test#7	Test#6 + x-capacitor (DM filter)	

TEST#3-7: V2023.1 - CONDUCTED EMISSIONS - DIFFERENTIAL MODE

Name	Description	
Test#3	Reference (no improvement)	
Test#4	Test#3 + RCD-snubber	
Test#5	Test#4 + primary to secondary y-capacitors	
Test#6	Test#5 + CMC and y-capacitors (CM filter)	
Test#7	Test#6 + x-capacitor (DM filter)	

Differential Mode

TRILOGY OF MAGNETICS

• 1. LTspice Book

How to use and build spice models

• 2. Trilogy of Magnetics

Design Guide for EMI Filter Design, SMPS & RF Circuits

• 3. Trilogy of Connectors

Basic Principles and Connector Design Explanations

• 4. ABC of Power Modules

Functionality, Structure and Handling of a Power Module

• 5. ABC of Capacitors

Basic principles, characteristics and capacitor types

LABORATORY RACK

$\alpha \textbf{Rack \& } \Omega \textbf{Rack}$

- The new rack series are modular, flexible and can be equipped individually.
- Information brochure available

αRack variants

 Ω Rack variants

TECHNICAL SUPPORT NEEDED? use: #askLorandt

EMI NOISE PROFILES ACROSS INDUSTRIES

Arno Distel, Dipl.-Ing. FAE at Valens Semiconductor

WURTH ELEKTRONIK MORE THAN YOU EXPECT

TODAY'S AGENDA

- Valens Semiconductor
- EMC Noise Profiles in Automotive
- EMC Challenges in Industrial
- DSP-Based Approach to EMI
- EMC Challenges in Medical

CHOBASE

mipialliance

THE VARIOUS EMC PROFILES ACROSS INDUSTRIES

EMC CHALLENGES IN: AUTOMOTIVE

Additive White Gaussian Noise (AWGN)

Continuous broadband environment noise comprising contributions from multiple independent sources, normally distributed noise peaks.

Caused by: Electrical systems within the vehicle.

Transients on Line (ToL)

Large electrical transients with a short duration (up to ~200nS) but with very high amplitude.

Caused by: Electrical systems within the vehicle.

Alien Crosstalk (Xtalk)

Continuous, relatively uniform, bounded broadband noise from neighboring cables (aggressors) in the harness/PCB, based on their coupling length and proximity to the "victim" cable.

Caused by: In-vehicle connectivity infrastructure.

Narrow Band Interference (NBI)

Continuous narrowband noise, tested using standard EMC tests like BCI and RF Ingress. Limited peak distribution but occurring at a much higher probability.

Caused by: External-to-the-vehicle transmitters or hand-held transmitting devices in the vehicle

NOISE PROFILES IN TIME AND FREQUENCY DOMAIN

NOISE PROFILES IN TIME AND FREQUENCY DOMAIN

LEGACY EMI COUNTERMEASURES

- Limiting cable length
- Reducing bandwidth
- Shielded cables
- Forward error correction (FEC)

Existing solutions impose limitations on connectivity infrastructure

THE EFFECTS OF EMI ON AUTONOMOUS SYSTEMS

EMC CHALLENGES IN: INDUSTRIAL

EMC CHALLENGES

Cable length

Can reach 100 meters or more in a variety of industrial applications

LONGER DISTANCES ACCELERATE CHANNEL ATTENUATION

The longer the cable, the more attenuation of the channel at high frequencies.

EMC CHALLENGES

Flexibility

Often requiring unshielded channels which offer higher cable flexibility

<u>CHANNELS TESTED – CHANNEL INSERTION LOSS (IL)</u>

Valens' A-PHY Chipsets: A DSP-Based Approach to EMI

Dynamic Error

Correction

PULSE AMPLITUDE MODULATION

- Pulse Amplitude Modulation
- Higher levels of PAM encode more bits per symbol, leading to:
 - Stream sensitive transmissions operating at different PAM levels (PAM2 for Header, PAM4 for Controls, PAM4/8/16 for payload)
 - Lower frequency on the cable
 - Lower insertion loss
 - Lower noise due to lower receiver bandwidth

Higher levels of PAM lower the required link frequency; while competing solutions use PAM2/4, MIPI A-PHY solutions reach PAM16

Noise

Cancellation

Dynamic Error

Correction

DSP

Adaptive Equalization

FULLY ADAPTIVE EQUALIZATION

 Fully adaptive equalization tracks channel variations in real time, while competing solutions only select from pre-defined parametric/discrete filters

- Equalizes timing variations of the channel
- Compensates reflections from concatenated multi-inline cable structures

Compensates for channel insertion loss throughout the length of the cable

NOISE CANCELING FOR EMI ATTACKS

20

- Just-in-time noise canceller: Synchronized mechanisms that speed up canceller convergence
 - Optimized for EMI attacks (NBI), including non-linear harmonic distortions

The Valens solution is fully adaptive and optimized for Narrowband Interference (NBI), while competing solutions rely mainly on shielding and application-level retransmission to deal with this noise profile

DYNAMIC ERROR CORRECTION (RTS) – OPTIMIZED FOR NBI

Pulse Amplitude Modulation

- Ultra-fast: occurs at the physical level (PHY)
- Dynamic modulation ensures retransmitted packets arrive uncorrupted

	FEC Forward error correction	DMLR Dynamically Modulated Local Retransmission
Bounded latency	\checkmark	\checkmark
White noise correction	\checkmark	\checkmark
EMI noise correction	×	~

Transparent to upper layers, bounded to ~10us latency

DMLR is specifically designed to handle electromagnetic noises present in the vehicle,

while FEC is extremely limited in its ability to deal with such noises

SUPERIOR TECHNOLOGY: 20X HIGHER NOISE RESILIENCE VS. COMPETITION

EMC CHALLENGES IN: MEDICAL

NOISE CAUSED BY ELECTROSURGERY

Different modes use different current patterns. Modulated coag profile as worst case. Xtalk based on coupling length and proximity to the "victim" cable.

Caused by: Electrosurgical Unit operated close in vicinity to other electrical devices.

COEXISTENCE OF VIDEO AND ELECTROSURGICAL EQUIPMENT

ELECTROSURGICAL NOISE CANCELLATION DEMONSTRATION

Q&A

Arno Distel Field Application Engineer Europe

- arno.distel@valens.com
- www.valens.com
- www.linkedin.com/in/arno-distel/

