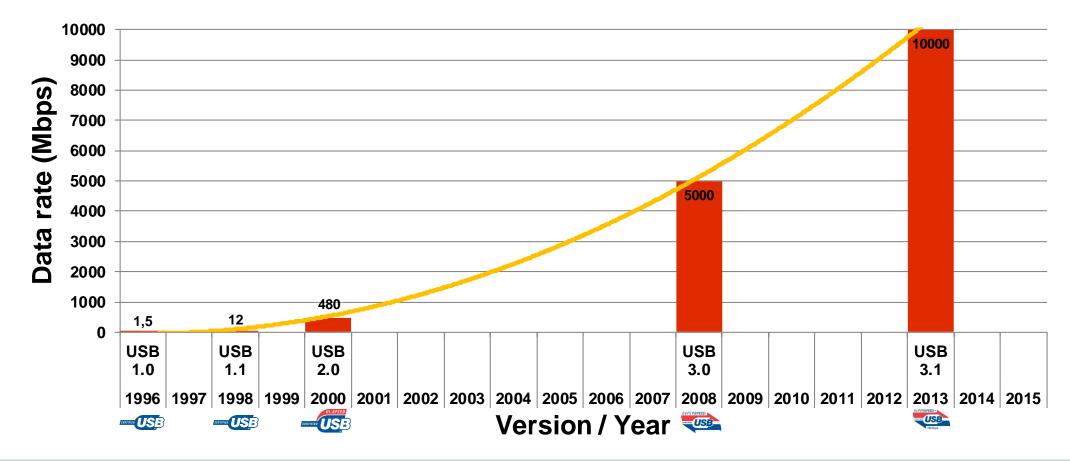


USB 3.1 – ein flexibles Stecksystem für viele Anwendungen

Würth Elektronik
Technical Academy
Fabian Altenbrunn

1

Agenda


- **Geschichte und Fortschritt von USB**
- **Elektrische Eigenschaften**
- Mechanische Eigenschaften
- Verarbeitbarkeit
- Zusammenfassung

Ein wenig Geschichte – USB Versionen

USB = <u>Universal</u> Serial Bus

Ein wenig Geschichte – von USB 2.0...

Year/Version

В

Mini

Micro

Datenrate

Power

USB 2.0 - 2000

480 Mbps

500mA / 5V

Ein wenig Geschichte – ...zu USB 3.0 ...

Year/Version

В

Mini

Micro

Datenrate

Power

USB 2.0 - 2000

480 Mbps 500mA / 5V **USB 3.0 – 2008**

5000 Mbps 900mA / 5V

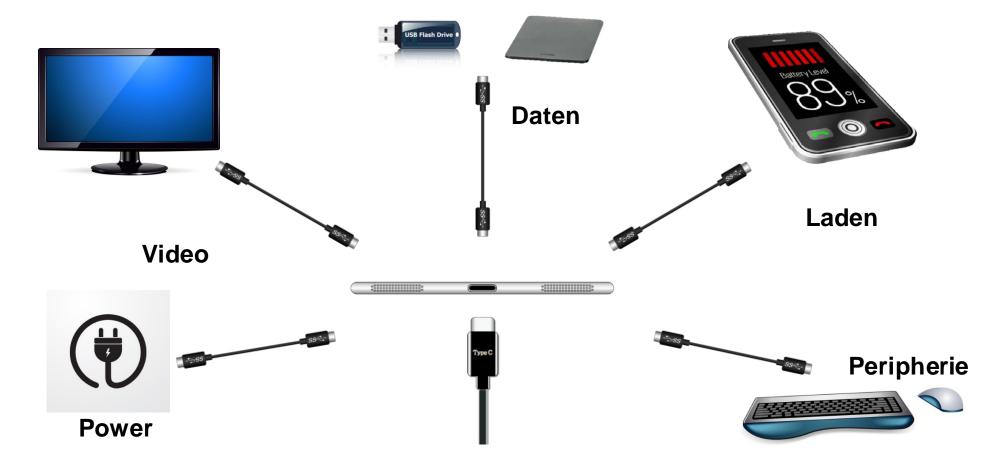
Ein wenig Geschichte – ...zu USB 3.1

- Year/Version
- A
- B
- Mini
- Micro
- **-** C
- Datenrate
- Power

USB 2.0 - 2000

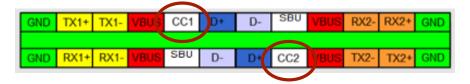
480 Mbps 500mA / 5V **USB 3.0 – 2008**

5000 Mbps 900mA / 5V USB 3.1 - 2013


10000 Mbps 5A / 20V

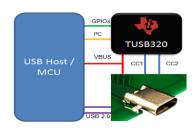
USB Typ-C für alle Anschlussmöglichkeiten

Erster Steckverbinder, der die Leistung in beide Richtungen unterstützt.



Configuration Channel

Bereitstellung der Flexibilität von Typ-C

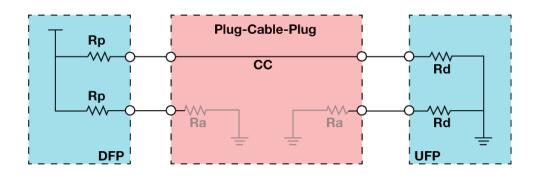


- Funktionell wird der Konfigurationskanal (CC) verwendet, um die folgenden Zwecke zu erfüllen:
- Erkennt wenn der USB Port gesteckt wurde,
- Erkennt die Orientierung des gesteckten Kabels,
- Einrichtung DFP (sink) und UFP (source) Rollen zwischen zwei verbundenen Ports,
- Erkennen und Konfigurieren von Power: USB Typ-C Strommodi oder USB Stromversorgung,
- Erkennung und Konfiguration von optionalen Alternativ- und Zubehörmodi.

Typischer CC-Flow für die DFP-zu-UFP-Konfiguration:

Erkennen einer gültigen Verbindung USB-Stromversorgungsmethode einrichten

als DFP oder UFP konfigurieren


USB Power Delivery (PD)

Erweitert die USB Typ-C-Funktionalität - mehr Leistung, Alt-Modus, Flexibilität

Was ist USB PD?

- USB PD ist ein Ein-Draht-Kommunikationsprotokoll über CC-Leitungen,
- Ein Verhandlungsverfahren zur Erweiterung der USB Typ-C Schnittstellenfähigkeit für mehr Leistung, Alt-Modus und Flexibilität,
- Beide Enden müssen bestimmte erweiterte Funktionen für einen erfolgreichen PD-Vertrag unterstützen.

Warum USB PD?

Erweiterte Leistung

- USB Typ-C liefert bis zu 15W (5V/3A) Strom über VBUS mit einfachem Widerstandsteiler-Netzwerk
- Zur Erweiterung der Stromversorgung über 5V/3A hinaus muss USB PD verwendet werden
- PD kann eine Leistung von bis zu 100W (20V/5A) aushandeln schnelleres Laden

Alternativ Modus

- USB PD muss für jeden Alt-Modus verwendet werden
- Durch PD Alt Mode Verhandlung kann die USB Type-C
 Schnittstelle für Nicht-USB Anwendungsfälle verwendet werden
- SS- und SBU-Leitungen sind für den Alt-Modus verfügbar
- USB2 muss im Alt-Modus erhalten bleiben

Rollenflexibilität

- Standardmäßig ist Host/DFP eine Stromquelle und Device/UFP eine Stromsenke
- Zur Entkopplung der Daten-/Powerrollen USB PD verwenden

USB Type-C Power Modis

Flexible und modulare Leistungsmethoden

Der USB Typ-C kann zur Stromversorgung über eine Reihe von verschiedenen Protokollen verwendet werden:

Vorrang	Modus der Operation	Nominale Spannung	Maximaler Strom
Höchster	USB PD	Bis zu 20 V	Bis zu 5 A
T	USB Type-C Strom @ 3A	5 V	3 A
	USB Type-C Strom @ 1.5A	5 V	1.5 A
	(USB BC1.2)	5 V	Bis zu 1.5 A
	USB 3.1		900 mA
Niedrigster	USB 2.0		500 mA

Port Power Rollen

Nach der Einführung von USB PD werden die Port Power Rollen nun getrennt von den Port Data Rollen definiert.

- Anbieter: Das Gerät kann nur Strom liefern
- Verbraucher: Das Gerät kann nur Strom empfangen
- Verbraucher/Anbieter: Das Gerät kann entweder als Verbraucher oder als Anbieter fungieren. Dies ist nur für Geräte möglich, die USB PD unterstützen

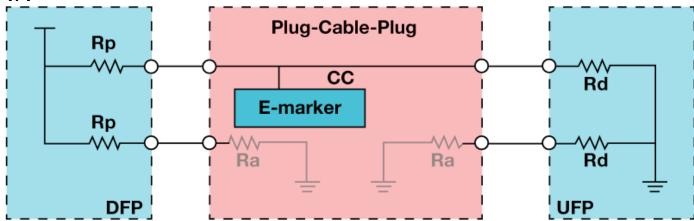
Kann bis zu 100W über einen USB Typ-C Port liefern!

USB PD Alternate Mode Verhandlung

Oszilloskopdarstellung zwischen einem Dock und einem Notebook zur Erstellung eines USB PD-Vertrags

Elektronisch markierte Kabel

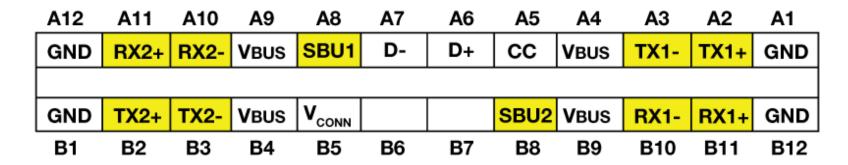
USB Typ-C Schnittstelle allgegenwärtig machen



Was ist E-marker?

- Einfacher USB PD-Controller in einem Kabel
- Reagiert auf USB PD-Befehle von DFP/Quelle
- Bereitstellung von Kabeleigenschaften wie Strombelastbarkeit, Leistung, Lieferantenidentifikation usw.
- Typischerweise versorgt durch VCONN

Wann wird E-marker benötigt?


- USB Typ-C Kabel mit mehr als 3A Stromstärke
- USB Typ-C voll ausgestattetes Kabel mit USB
 3.1 oder bei Verwendung des Alt-Modus

USB Typ-C Alternativer Modus

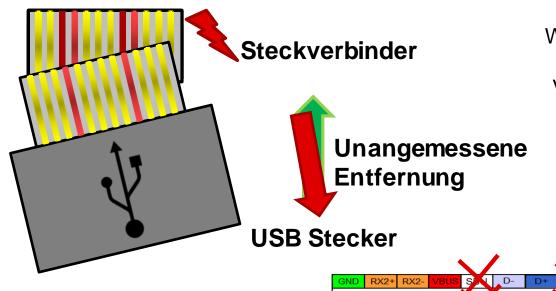
Erweitert die Möglichkeiten über USB-Daten hinaus

Was ist Alt. Modus?

- Alternative Nutzung der USB Type-C-Schnittstelle für Nicht-USB-Funktionen
- USB2 muss erhalten bleiben.
- USB PD muss verwendet werden, um einen alternativen Modus auszuhandeln
- Definition: Von einem Hersteller oder einer Normungsorganisation definierter Betrieb, der mit einer durch den USB-IF zugewiesenen SVID verknüpft ist. Das Ein- und Aussteigen in und aus einem alternativen Modus wird durch die Befehle USB PD Structured VDM Enter Mode und Exit Mode gesteuert

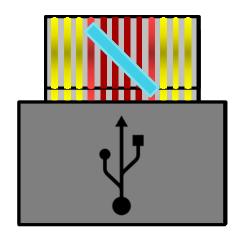
Beispiele vom Alt. Modus

- DisplayPort (DP)
- Thunderbolt
- PCI Express
- MHL
- HDMI (for dongle/adapters)


Kannst du deinen eigenen alternativen Modus erstellen?

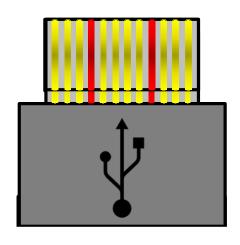
- Option 1: Erstellen eines offiziellen alternativen Modus, der von USB-IF genehmigt wurde (erhält eine SID, Standard ID)
- Option 2: Holen Sie sich eine VID von USB-IF und erstellen Sie einen inoffiziellen alternativen Modus (Sie müssen beide Seiten des Systems besitzen, damit dies funktioniert)

Möglicher Fehler: Mechanischer Drall



Wenn der USB-Stecker schräg ausgezogen wird, kann es zu einem Kurzschluss des VBUS-Pins mit SBU- oder CC/Vconn-Pins kommen.

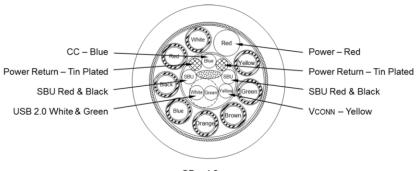
Möglicher Fehler: Schmutz oder Wasser


Alle leitfähigen Ablagerungen oder Wasser könnten die SBUund CC-Pins zu den 20V-VBus-Leitungen kurzschließen.

Möglicher Fehler: Nicht konforme Kabel

- Selbst wenn Ihr System kein USB PD verwendet (Sie laden mit 5V, 500mA), gibt es nicht konforme Kabel, die 20V ohne PD-Verhandlung ausgeben
- Wenn Ihr System nicht für 20V ausgelegt ist, kommt es zu einem Fehler
- In einer Umfrage zu den bei Amazon erhältlichen USB-Typ-C-Kabeln waren 28% der Kabel nicht konform zur USB-IF-Spezifikation. (Google Ingenieur Benson Leung: 20/71 Kabel außerhalb der Spezifikation)
- Trotz des Verbots von Amazon besteht immer noch die Gefahr, dass Endverbraucher nicht konforme USB-Typ-C-Kabel von Kabelherstellern kaufen

USB 3.1 Produkt Überischt


Typ C

USB Typ-C Receptacle

USB Typ-C Kabel

OD = 4.8mm

Coax are SS pairs – specific pairs not defined in cable

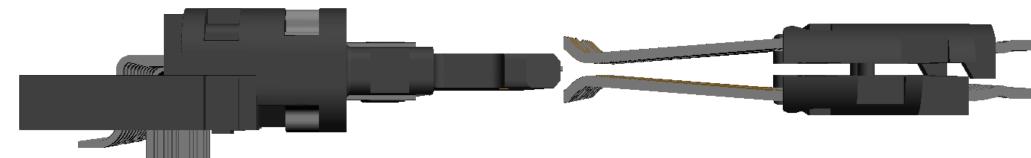
USB Typ-C Plug

Figure 2-1 USB Type-C Receptacle Interface (Front View)

	A1	A2	А3	A4	A 5	A6	A7	A8	A 9	A10	A11	A12
	GND	TX1+	TX1-	V BUS	CC1	D+	D-	SBU1	VBUS	RX2-	RX2+	GND
[
	GND	RX1+	RX1-	V BUS	SBU2	D-	D+	CC2	V BUS	TX2-	TX2+	GND
	B12	B11	B10	В9	В8	В7	В6	B5	В4	В3	B2	B1

Figure 2-2 USB Full-Featured Type-C Plug Interface (Front View)

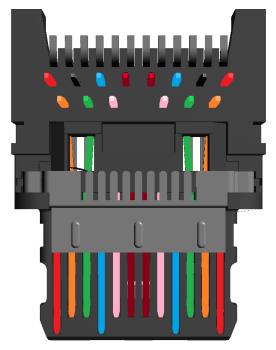
A12	A11	A10	A 9	A8	A7	A6	A 5	A4	А3	A2	A1
GND	RX2+	RX2-	VBUS	SBU1	D-	D+	СС	VBUS	TX1-	TX1+	GND
GND	TX2+	TX2-	V BUS	V CONN			SBU2	V BUS	RX1-	RX1+	GND
B1	B2	В3	B4	B5	В6	B7	B8	В9	B10	B11	B12

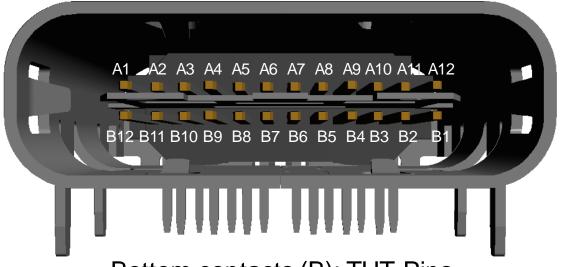

USB 3.1 Produkt Übersicht

Typ C Receptacle and Plug Design - Schliffbild

Receptacle – Seitenansicht

Plug – Seitenansicht





USB 3.1 Produkt Übersicht

Typ C Receptacles Design – 632 723 x00 011

Bottom contacts (B): THT Pins Top contacts (A): SMT Pins

USB 2.0

USB 3.0

USB 3.1

A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12
GND	TX1+	TX1-	V _{BUS}	CC1	D+	D-	SBU1	V _{BUS}	RX2-	RX2+	GND
GND	RX1+	RX1-	V _{BUS}	SBU2	D-	D+	CC2	V _{BUS}	TX2-	TX2+	GND
B12	B11	B10	В9	B8	B7	В6	B5	B4	В3	B2	B1

Typ C - Receptacles

Bestellnummer:

- 632 723 X00 011

X	PCB Dicke	Pinlänge
1	1.00 mm	1.50 mm
3	1.60 mm	1.90 mm

Material: LCP; schwarz

Nennstrom: 5 A

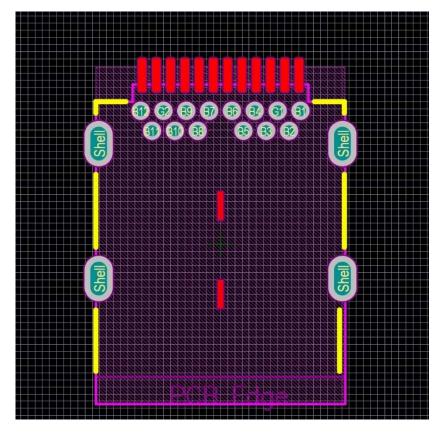
Nennspannung: 5 VDC (12VDC/20VDC)

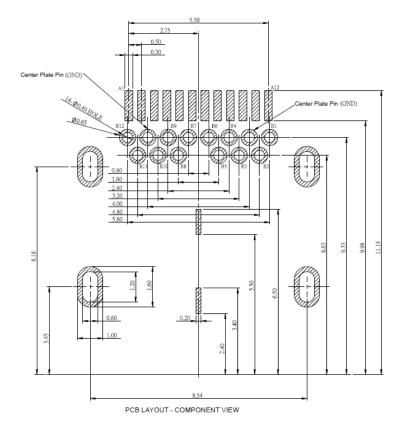
Langlebigkeit: 10 000 cyklen

Löten: JEDEC bleifreies Wellen- und Reflow-Löten

- 632 723 X30 112

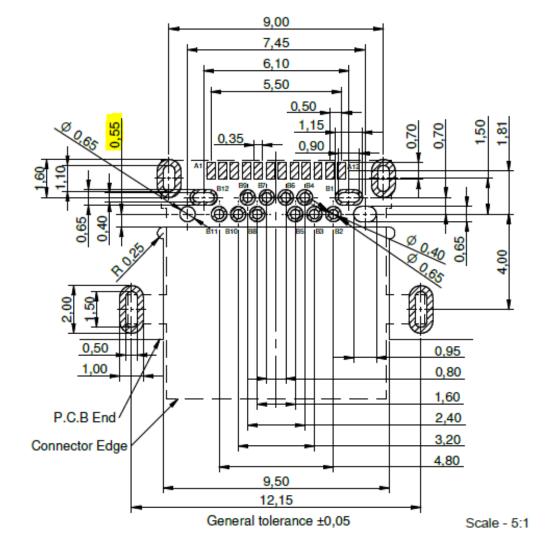
X	PCB Dicke	Pinlänge
1	1.60 mm	1.60 mm




Layout PCB – horizontal USB-C 3.1

Footprint

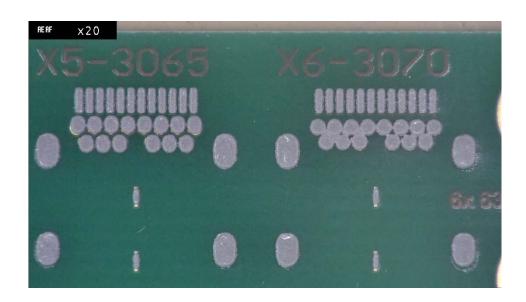
Empfohlenes PCB Layout

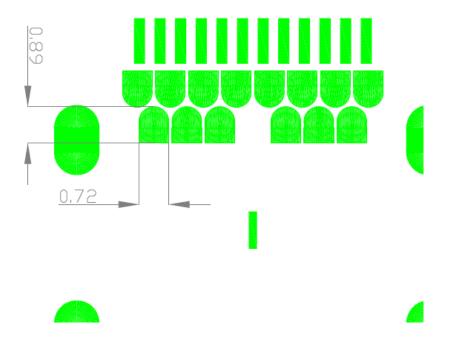


Layout PCB – mid mount

Achtung: Abstand von Mitte PIN zu der Oberkannte der Frässpur.

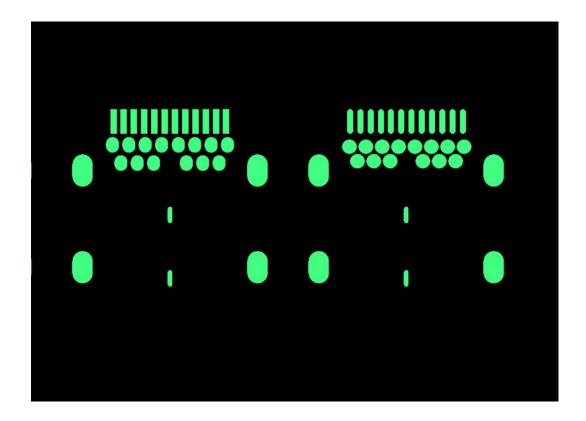
Abstand Mitte-Pin zu Mitte-Frässpur beträgt 0,55mm + den Radius des Fräsers (0,25mm) gleich **0,80mm**.

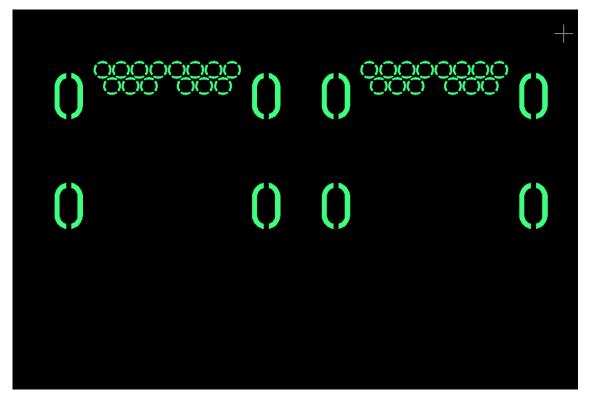



Pastendruck & Schablone

linker Lötpaddurchmesser: 0,65mm rechter Lötpaddurchmesser: 0,70mm

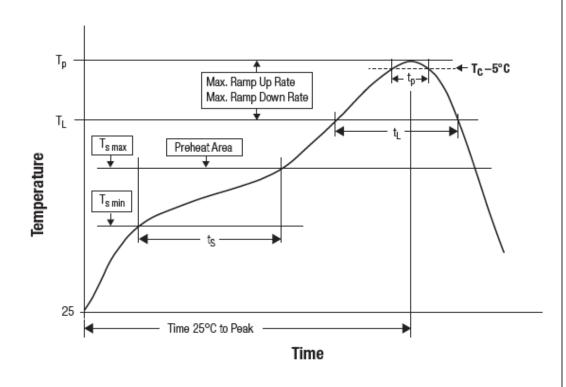
Schablonenbeispiel




Pastendruck & Schablone

Ansicht Oberseite

Ansicht Unterseite



Lötprofil

Classification Reflow Profile for SMT components:

Classification Reflow Soldering Profile:

Profile Feature		Value
Preheat Temperature Min ¹⁾	T _{s min}	150 °C
Preheat Temperature Max	T _{s max}	200 °C
Preheat Time t_s from $T_{s min}$ to $T_{s max}$	t _s	60 - 120 seconds
Ramp-up Rate (T _L to T _P)		3 °C/ second max.
Liquidous Temperature	T _L	217 °C
Time t _L maintained above T _L	ŧ	60 - 150 seconds
Peak package body temperature	Tp	see table
Time within 5°C of actual peak temperaure	t p	20 - 30 seconds
Ramp-down Rate (T _L to T _P)		6 °C/ second max.
Time 25°C to peak temperature		8 minutes max.

¹⁾ refer to IPC/JEDEC J-STD-020D refer to IPC/ JEDEC J-STD-020E

Package Classification Reflow Temperature:

Properties	Volume mm³ <350	Volume mm ³ 350-2000	Volume mm³ >2000
PB-Free Assembly Package Thickness < 1.6 mm ¹⁾	260 ℃	260 °C	260 °C
PB-Free Assembly Package Thickness 1.6 mm - 2.5 mm	260 ℃	250 °C	245 °C
PB-Free Assembly Package Thickness ≥ 2.5 mm	250 ℃	245 °C	245 °C

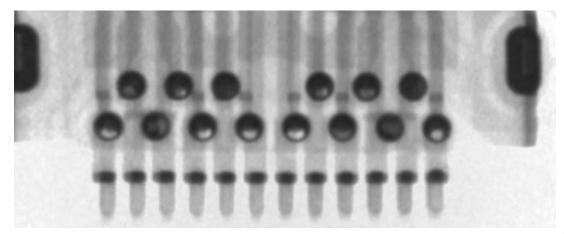
¹⁾ refer to IPC/JEDEC J-STD-020D refer to IPC/ JEDEC J-STD-020E

Lötbeispiele

Lötstellen ohne defekte

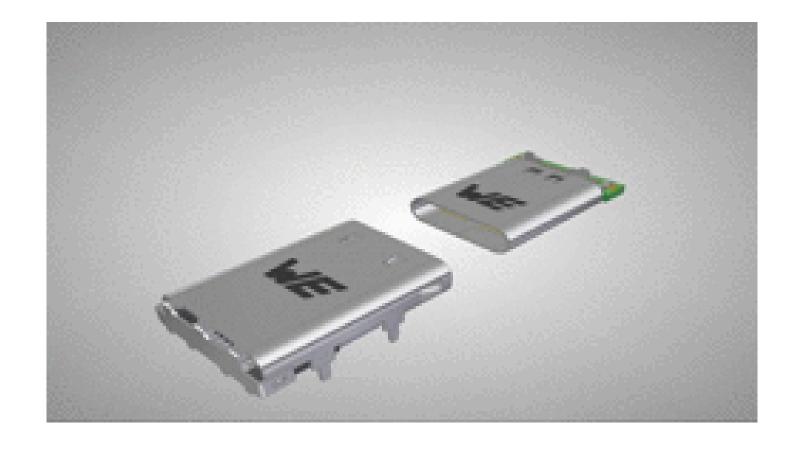
Lötstellen mit defekten

Handlötung

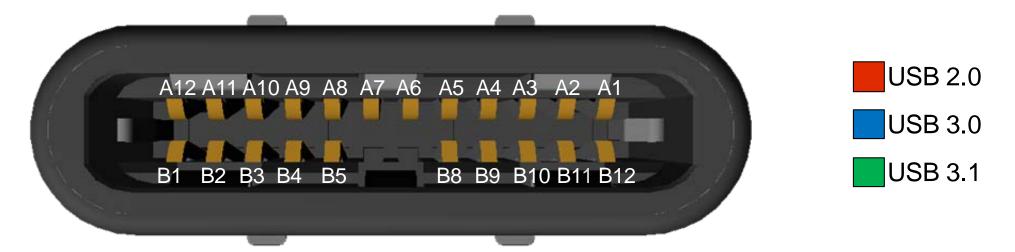


Lötstellenbewertung mittels Röntgen

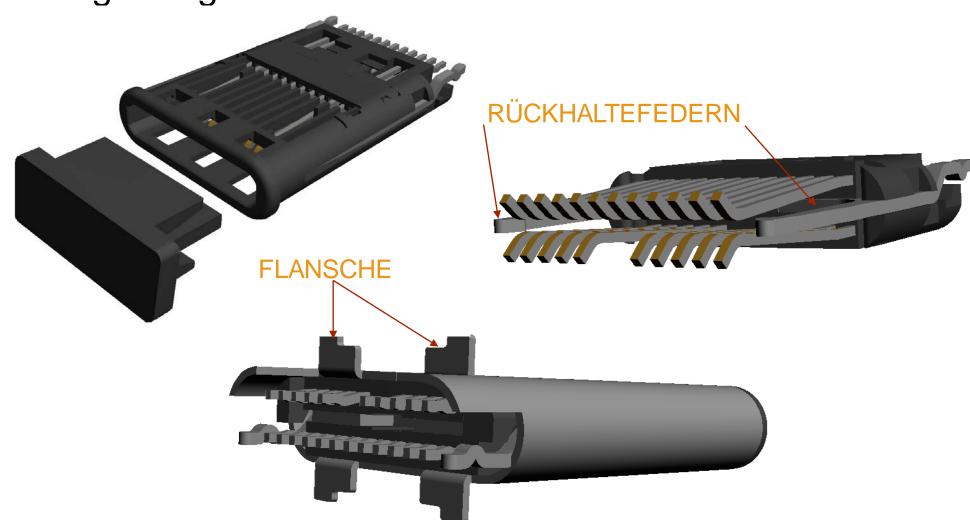
Lötergebnis ohne defekte


Lötergebnis mit defekten

Typ C Plug – 632 723 x00 011



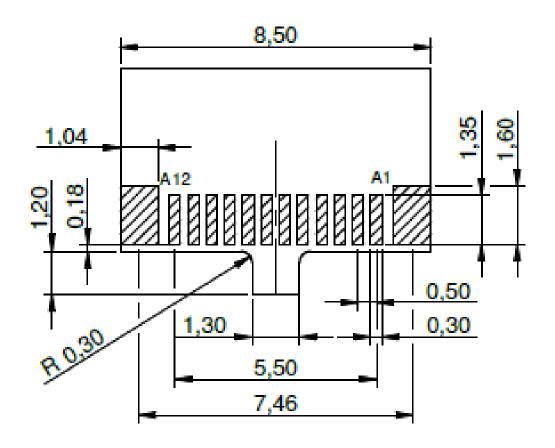
Typ C Plug – 632 712 000 011

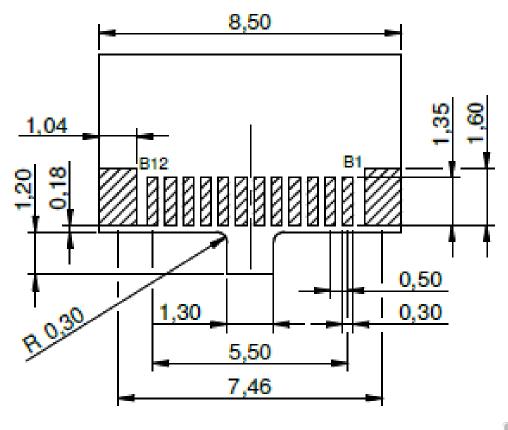


A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1
GND	RX2	RX2-	V _{BUS}	SBU	D+	D-	CC1	V _{BUS}	TX1-	TX1+	GND
	+			1							
GND	TX2+	TX2-	V_{BUS}	CC2			SBU	V _{BUS}	RX1-	RX1	GND
							2			+	

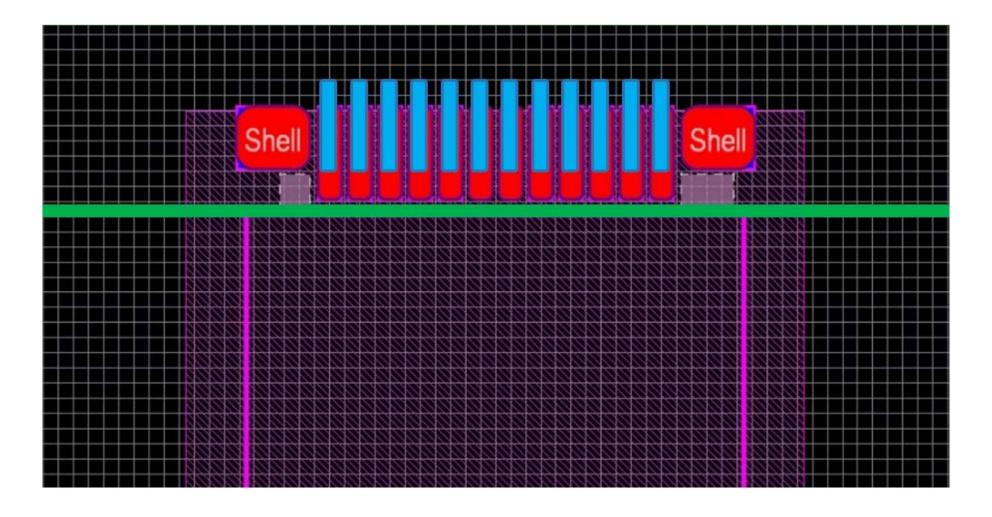
USB 3.1 Produkt Übersicht

Typ C Plug Design - 632 712 000 011



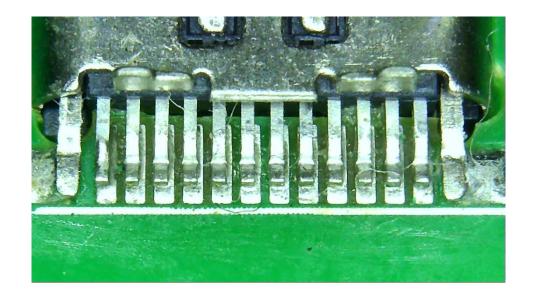

Layout PCB

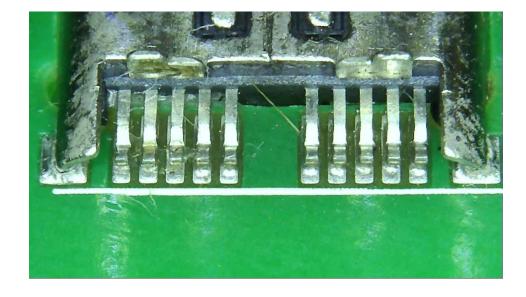
Ansicht Oberseite



Ansicht Unterseite

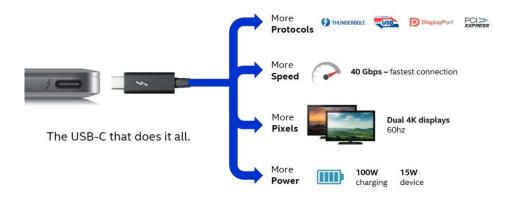
Pastendruck & Schablone




Lötbeispiele

Ansicht Oberseite

Ansicht Unterseite



Zusammenfassung

Thunderbolt™ 3 Brings Thunderbolt to USB-C

Hochfrequenz Eigenschaften:

- hohe Datenrate (über 10GHz)
- EMV / EMI Schutz
- mix Modus ist möglich (z.B. USB 2.0 & I²C; USB 2.0 und DC/DC controller)

Mechanische Eigenschaften:

- 10.000 Steckzyklen
- hohe Auszugsskraft (Rückhaltekraft)
- Langjährige Zuverlässigkeit
- Zeitersparnis (es wird nur ein Steckertyp benötigt)
- Platzsparend

Elektrische Eigenschaften:

- 5V / 12V / 20V
- bis zu 5A
- PD (bis zu 100W)

34

Vielen Dank!

Wir sind jetzt für Sie da! Fragen Sie uns direkt im Chat!

Sie können uns auch gerne nach der Sitzung kontaktieren:

<u>eisos-webinar@we-online.com</u>
<u>Fabian.Altenbrunn@we-online.com</u>

