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MOTIVATION
Multilayer ceramic capacitors (MLCC) most common 
capacitor

Different classes, defined by material, 
capacitance/volume, thermal stability

Most prominent: Class 2 Capacitors
 high volumetric capacitance 
 buffer, and coupling applications

≈ 1000 part numbers at WE
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MOTIVATION

DC voltage
increase

Class 2 ceramic capacitors have high permittivity, 

 BUT… capacitance decreases with increasing DC Voltage

DC voltage
increase
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OUTLINE

• Structure of MLCCs 

• Material analysis of barium titanate

• Long- and short-term polarization

• Effect on capacitance, the memory effect

• Mathematical model of ferroelectric polarization

• frequency and voltage-dependent model 

• Implementation: LTSpice
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MLCC STRUCTURE, PRINCIPLE 

+-

+

-

Grain

Domains

Core / Shell

+-
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FERROELECTRICS
barium titanate, unit-cell

[1, …, 12]
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INTERPRETATION OF CAPACITANCE-VOLTAGE MEASUREMENTS

  

  

Internal 

 

  

𝑃𝑟  

𝑃𝑠 

𝑉𝑐 ~𝐸𝑐  

  

  

Internal 

 

  

𝑃𝑟  

𝑃𝑠 

𝑉𝑐 ~𝐸𝑐  

Voltage

Time

dc bias 

ac 

𝑓 = 1 𝑘𝐻𝑧, 𝑉𝑎𝑐 = 1𝑉

[13, …, 19]

Voltage

Time
ac 

dc=0
𝑉𝑎𝑐 = 𝑐𝑜𝑛𝑠𝑡. 

𝐶 =
𝑑𝑄

𝑑𝑉



9

DC VOLTAGE EFFECT

TITLE
INTERNAL | AUTHOR | DATE

However, what is the cause for the 
difference in capacitance change? • Ceramic

Class 2, X7R 
• Capacitance 

10μF
• Rated Voltage
 50V

• Size Code
 1210

BaTiO3 based MLCCs show a capacitance dependence upon dc voltage. This is due 
to ferroelectric properties of BaTiO3. 

WE, PN: 885012209073
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SEM-EDX IMAGE AND ELEMENTAL ANALYSIS

TITLE
INTERNAL | AUTHOR | DATE

Particle size distribution

Energy-dispersive X-ray spectroscopy

Samples incased in epoxy

Particle size
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CORRELATE DOMAIN SIZE WITH CAPACITANCE CHANGE

TITLE
INTERNAL | AUTHOR | DATE

Small change

!
Small domain

10µF 50V 1210 X7R

Effect of 

Shell

Domain

Core / Shell

Grain
Domain
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Introduced MLCC structure, barium titanate

 First look at DC-Bias effect and its variations

  Related 𝛥𝐶 to the domain size 

  

…. However, what is the effect of long-time dc bias exposure?

   

SO FAR…
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AGING EFFECTS ON CAPACITANCE-VOLTAGE MEASUREMENTS

Aging Effect

10µF 50V 1210 X7R

[24]
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DETAILS: SHORT- AND LONG-TERM CAPACITANCE-VOLTAGE MEASUREMENTS

𝐶∞ = 𝐶𝑖 1 +
𝑘

2
tanh 10

𝑉 − 0.7𝑉𝑟

𝑉𝑟
+ 1 −

𝑙

2
tanh 10

𝑉 − 0.25𝑉𝑟

𝑉𝑟
+ 1

𝐶𝑖(1 − 𝑙)

𝐶𝑖𝑘

𝑽𝒓

𝑪
∞ 𝑪
𝒊

Strong decline at lower voltage reduced decline high voltage 

Relation of initial and final capacitance 

Dynamic of capacitance decline 

𝐶𝑖: immediate capacitance decrease 

𝐶𝑙 𝑡 = 𝐶𝑖 − 𝐶∞ exp −
𝑡

𝜏

𝛼

+ 𝐶∞ 
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SHORT- AND LONG-TERM CAPACITANCE-VOLTAGE MEASUREMENTS

𝐶∞

[24]

bit stronger at lower voltage

weaker at high voltage

Relative long-time decline:



16

Introduced MLCC structure, barium titanate

 First look at DC-Bias effect and its variations

  Related 𝛥𝐶 to the domain size

   Discussed differences between immediate effect and aging 

  

… What about the model?  

SO FAR…
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MATHEMATICAL MODEL OF FERROELECTRIC POLARIZATION

𝑃+ 𝐸 ∝ 𝑃𝑠 tanh
𝐸 − 𝐸𝑐

2𝛿

𝐶𝑝 =
𝑑𝑃

𝑑𝑉
∝ sech2

𝐸 − 𝐸𝑐

2𝛿

𝐶 = 𝐶𝑝 + 𝐶𝑠

S.L. Miller et al., Modeling ferroelectric capacitor switching with asymmetric nonperiodic input signals and arbitrary initial conditions, Journal of Applied Physics, 70:2849-2860 (1991)

𝑃− 𝐸 = 𝑃+(−𝐸)

Single fraction

Multiple fractions

…but does not fit all

Fits most of it…
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CONSTRUCTION AND COMPOSITION OF MLCC

Material and
 Electrode geometry

  … is inhomogeneous  

Distribution of voltage dependences 

𝐸
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MATHEMATICAL MODEL OF FERROELECTRIC POLARIZATION

𝐶 = 𝐶𝑝 + 𝐶𝑠

Multiple fractions

𝐶𝑝 = 𝐶𝑚𝑎𝑖𝑛 + 𝐶𝑙𝑒𝑓𝑡 + 𝐶𝑟𝑖𝑔ℎ𝑡

• material fractions and 
• inhomogeneous electrodes
 … are accounted for by sum:

𝐶𝑃 = ෍
𝑖

𝑎𝑖 sech2
𝑉 − 𝑉𝐶𝑖

𝑏𝑖
,

… which can be reduced to three summands:

[24, 25]
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Introduced MLCC structure, barium titanate

 First look at DC-Bias effect and its variations

  Related 𝛥𝐶 to the domain size

   Discussed differences between immediate effect and Aging

    Introduced a model based on measurable and 

    physically meaningful parameters

  

…. Well, great, but that is still a complicated calculation. 

 … How is that supposed to help?

   

SO FAR…
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IMPLEMENTATION: LTSPICE

𝑃 𝑉 = x4 ⋅ 𝑇𝑎𝑛ℎ
𝑉 − 𝑥5

𝑥6
+ ⋯

𝐶 𝑉 = 𝑥1 × 𝑆𝑒𝑐ℎ2
𝑉 − 𝑥2

3
+ ⋯

Fit

Implement

https://redexpert.we-online.com
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FREQUENCY AND VOLTAGE-DEPENDENT MODEL 

𝑅 𝐶 𝐿

𝑍(𝜔, 𝑉) = 𝑅 +
1

𝑖𝜔 𝑪
+ 𝑖𝜔𝐿

𝑹 𝑽 ≈ 𝒄𝒐𝒏𝒔𝒕.

AC voltage

No ESR 
change 
measured

DC voltage

Only small ESR 
change measured

Boost converter topologyImpedance measurement

885012209006 f=50kHz
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FREQUENCY AND VOLTAGE-DEPENDENT MODEL 

𝑅 𝐶 𝐿

𝑍(𝜔, 𝑉) = 𝑅 +
1

𝑖𝜔 𝑪
+ 𝑖𝜔𝐿

𝑪 𝑽 DC voltage
increase

DC voltage
increase
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SUMMARY

• Introduced ferroelectricity and class 2 MLCCs

• Discussed the long- and short-term 

polarization effect

• Developed suitable model to fit 

o voltage dependence and

o frequency spectra  

• Implemented the model into LTSpice 
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Fitting:

MATHEMATICAL MODEL OF FERROELECTRIC POLARIZATION
Multiple fractions

𝐶 𝑉 =

𝐴 𝐶𝑠, 𝑉𝑚𝑎𝑥𝑎, 𝑏

×  ቎

቏

sech2 10
𝑉 − 𝑉𝐶

7 × 𝑏

+
b

30
 sech2

𝑉 −
𝑉𝑚𝑎𝑥

8
+ 𝑉𝑐

2 × 𝑏

+
b

30
 sech2

𝑉 +
𝑉𝑚𝑎𝑥

8
− 𝑉𝑐

2 × 𝑏

−  𝐶𝑠 ×
ℎ

10
+ 𝐶𝑠

𝑉𝐶

𝐶𝑠(𝑉𝑚𝑎𝑥)

𝑎 𝑉𝐶
𝑏 ℎ

𝑉𝑚𝑎𝑥[20, …., 23] and [25]
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POLARIZATION MODEL

𝐶𝑃 =
𝑎∗

𝑎0
 sech2 10

𝑉 − 𝑉𝐶

7 ⋅ 𝑏
+

b

30
 sech2

𝑉 −
𝑉𝑚𝑎𝑥

8
+ 𝑉𝑐

2 ⋅ 𝑏
+

b

30
 sech2

𝑉 +
𝑉𝑚𝑎𝑥

8
− 𝑉𝑐

2 ⋅ 𝑏
−  𝐶𝑠 ⋅

ℎ

10

𝑎∗ = 𝐶𝑠 ⋅
ℎ

10
− 1 + 𝑎

𝑎0 = 1 + 2
b

30
 sech2

𝑉𝑚𝑎𝑥
8

2 ⋅ 𝑏
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POLARIZATION CONTRIBUTION TO CAPACITANCE

𝐼 = 𝐴
𝑑𝑃

𝑑𝑡
+ 𝐶𝑠

𝑑𝑉

𝑑𝑡
+ 𝐼0 𝑉

𝐶 = 𝐴
𝑑𝑃

𝑑𝑡
+ 𝐶𝑠

𝑑𝑉

𝑑𝑡
+ 𝐼0 𝑉

𝑑t 

𝑑𝑉

𝐶 = 𝐴
𝑑𝑃

𝑑𝑉
+ 𝐶𝑠 + 𝐼0 𝑉

𝑑t 

𝑑𝑉

𝐶 = 𝐶𝑝 + 𝐶𝑠 + 𝐶𝑉
0

𝑃+(𝐸) = 𝑃𝑠 𝑡𝑎𝑛ℎ
𝐸 − 𝐸𝑐

2𝛿
 

𝛿 = 𝐸𝐶

1 +
𝑃𝑟
𝑃𝑠

1 −
𝑃𝑟
𝑃𝑠

−1
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