

Infrared revealed – from data transfer to biometrics – Basics of IR lightning

Today's speakers:

Zhelio Andreev Product manager Optoelectronics zhelio.andreev@we-online.com www.we-online.com

Overview

IR LED

- Electro-optical properties
- Pulse capabilities & temperature
- Switching time

Photodetectors

- Diode or Transistor
- Main parameters and differences

• The perfect pair

- How to match the emitter and detetor

Application examples

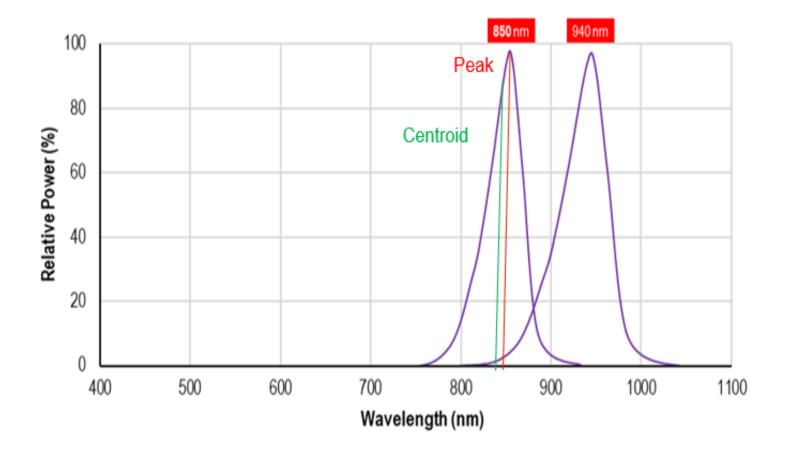
- Biometric measurements
- Data transfer & signals
- Detection & security

General Introduction

Preselected Die How to make the best IR component **Gold Wire** Optimized Main ingredients of the LED / Detector encapsulation **IR Emitter chip** _ Si based detector _ Correct housing – all industry standard packages available Good connection • Gold plated contacts The right encapsulation **Gold plated contacts Industry standard** package

IR LEDs

Preselected Die


- Pretested chips

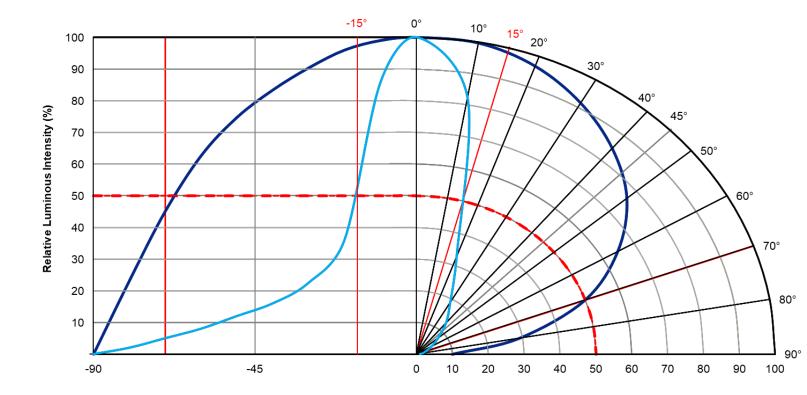
Wavelength

- Standard wavelength range 850nm and 940nm
- Centroid or Peak wavelength

Emission power

- Radiant intensity mW/sr
- Depend on the viewing angle
- From 1mW/sr up to 100mW/sr
- High power LEDs > 300mW/sr

IR LEDs


more than you expect

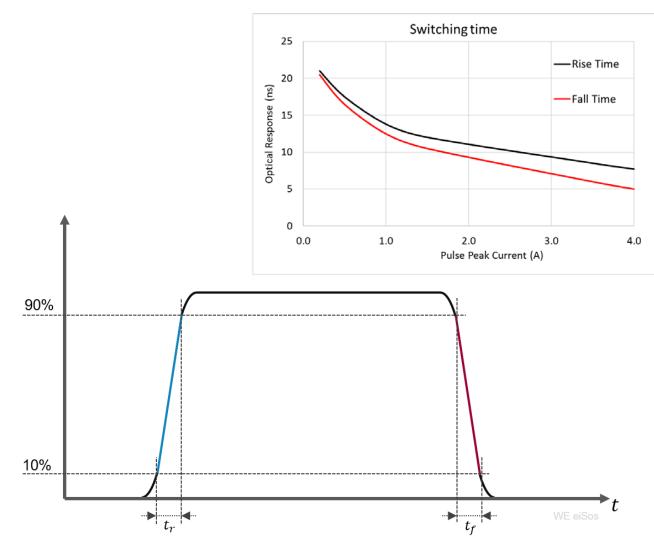
The right encapsulation

- Chip protection
- Non absorbing for the emission wavelength
- Shape the outgoing light

Viewing angle

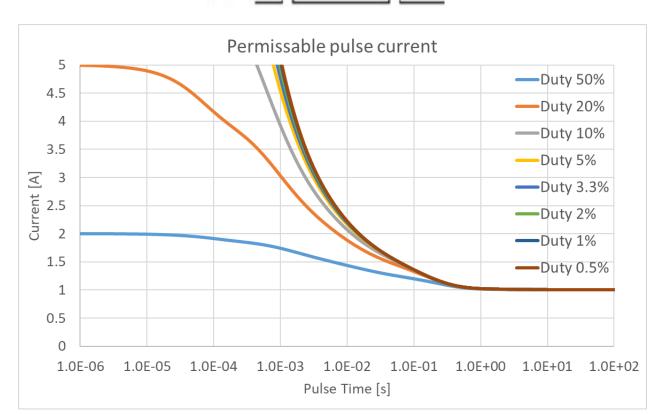
- Available range 20° to 150° degrees
- Short range, wide angle application
- Long range applications

Switching of LEDs


Signal

- short rise and fall time \rightarrow high switching frequency
- e.g.: $t_r = t_f = 10ns \Rightarrow f = \frac{1}{t_r} = 100MHz$
- What is behind the switching time
 - Parasitic and junction capacitance
 - Parasitic resistance
 - The higher the driving current the faster the switching time

rise time $[t_r]$ / fall time $[t_f]$:


time between 10% and 90% of the optical signal strength at the switch-on moment

Can differ from 20/80% measurement up to x2

Pulse capabilities

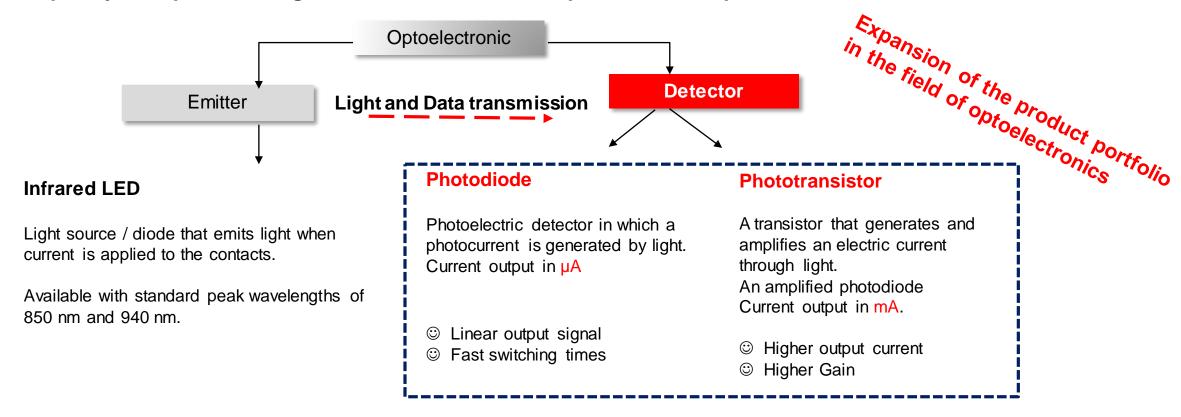
- Higher power for shorter time
 - Higher range, better signal
- What happens at higher currents
 - Standard chip 8x8mil (0.05mm2) @ 0.7A
 - Heat generation during ON time / relaxation in OFF time
 - Maximum allowed pulse current
 - Depend on the Duty cycle
 - Depend on the Chip size
 - Depend on the Packaging

Period T- 10 kHz - 0, 1 ms

Ton - 0.01ms

Toff = 0.09m

Duty 10% = T/10 ms



Photodetektoren

- What are photodetectors?
- Completely new product range silicon semiconductor photodiodes & phototransistors

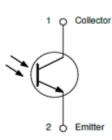
Diode vs. Transistor

Photodiode

- Contacts: Anode and cathode
- Spectral bandwidth:
 Wavelength range in which the photodiode receives light

Photocurrent in µA

Generated when light falls on the photodiode

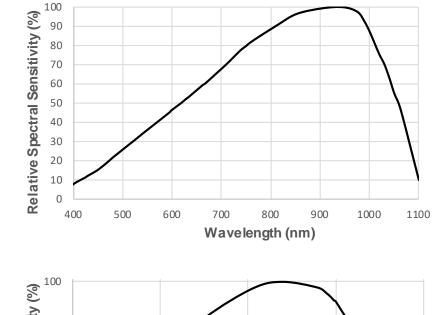

Dark Current

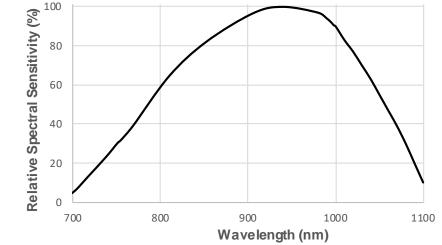
Current flowing without light/irradiation

- Switching times in ns
- Available with and without daylight blocking filter

Phototransistor

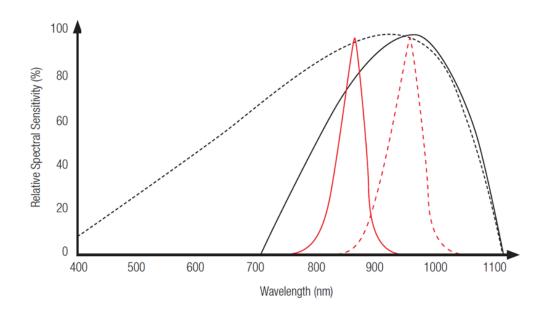
Contacts: Collector and emitter


• Spectral bandwidth:


Wavelength range in which the photodiode receives light

- Kollektorstrom in mA Generated when light falls on the phototransistor
- Collector-Emitter Dark Current
 Current flowing without light/irradiation
- Switching times in µs
- Available with and without daylight blocking filter

Daylight blocking filter


- Without daylight blocking filter
 - Transparent lens
 - Receives visible and infrared light (400-1100nm)

- With daylight blocking filter
 - Black lens
 - Blocks the visible light
 - Receives only light in the infrared range (700-1100nm)

Perfect match

• The maximum sensitivity of the photodetectors fits perfectly to the emitter spectrum.

100% @ 940 nm with Filter 95% @ 850 nm with Filter

- Perfect data transmission between emitter and detector
- Emitters and detectors are available in all industry standard packages
- One footprint for emitter and detector
- Same package for emitter and detector

 Switching times up to 100 MHz
 The extremely fast switching time of a few nanoseconds ensures high data transmission rates

0402 (1005)	1206 (3216
0603 (1608)	3528 mm
0805 (2012)	3535 mm
1104 (3010)	3/5 mm TH

The products for every application

Infrared LEDs

	Series	Size	Wavelength (nm)	Radiant Intensity (mW/sr)	Viewing Angle
	WL-SICW	0402,0603,1206	850/940	5-6 @ 20 mA	80°–150°
	WL-SISW	0402,1106,1104,1002,1206		0.8-11 @ 20 mA	45°-150°
	WL-SIRW	1206		5-20 @ 20 mA	30°
	WL-SITW	3528		8-9 @ 50 mA	120°
	WL-SIMW	3535		220-350 @ 1 A	90°/130°
	WL-TIRW	3 mm, 5 mm		30-85 @ 50 mA	35°

Select the suitable photodetector

Teste die Infrarot Produkte mit unserem Design Kit

Teste die Infrarot Produkte auf REDExpert

Photodiodes and Phototransistors

	Series	Size	Wavelength (nm)	Photocurrent @ VR=5V, Ee=1mW/cm² (uA)	Viewing Angle
0	WL-SDCB	1206		1.8	140°
	WL-SDSB	1104		2.5	150°
2	WL-TDRW	THT 5 mm	940	28	35°
0	WL-TDRB	THT 5 mm		31	35°

	Series	Size	Wavelength (nm)	Photocurrent @ VR= 5V, Ee=1mW/cm² (mA)	Viewing Angle
	WL-STCW	0603	940	1.6	150°
	WL-STCB	1206		1.8	140°
	WL-STSW	1104		2.5	150°
	WL-STRB	1206 dome		1.8	30°
	WL-STTW	3528		3.1	120°
-9	WL-STTB	3528		2.8	120°

Applications

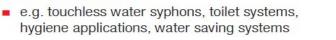
Security systems • e.g. smoke detector, camera

....

1...

1....

. ...

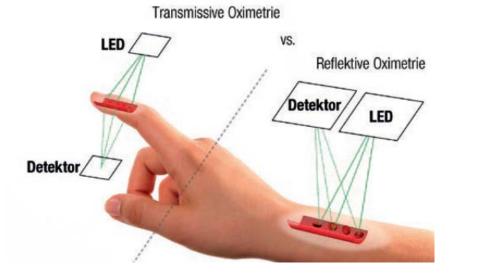


e.g. security areas, counter and encoder, optoelectronic sensors, data transmission

Automatic switches

Screens • e.g. touch & touchless

Biometrics & health monitoring e.g. heart rate monitoring, pulse oximetry, blood pressure



Home appliances • e.g. remote control, cleaning robot

Application: Biometrics/ Pulse Oximetry

- Non-invasive method for determining oxygen saturation using IR light
- Haemoglobin (red blood pigment) reflects infrared light
- The human pulse can be reproduced by changing the reflection of the heartbeat.

Function

Measurement

Pulse detection by reflection change \rightarrow Voltage change at the transistor

Filtering unit consisting of RC low pass +DC block for measured signal low-pass filter \rightarrow all above 4Hz DC Block \rightarrow Filter DC component of the signal

Amplifier for generating a digital signal

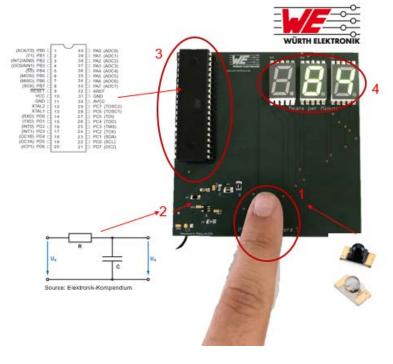
Processing by microprocessor

Counts the time between signals and calculates the pulse

Application: Biometrics/ Pulse Oximetry

Systole: Blood outflow phase in the heart (t_{svs})

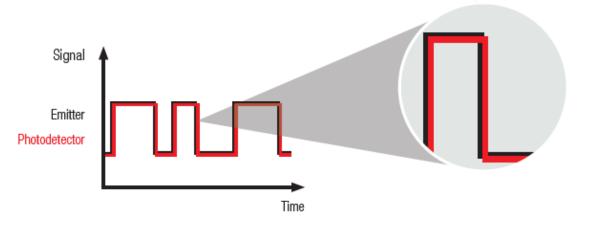
Diastole: Blood inflow phase in the heart (t_{dia})



Perfect interaction between the two components and due to short switching times \rightarrow Real-time measurement

One systole and one diastole each result in one period. The reciprocal of this period results in the frequency.

t_{svs}+tdia


1. signal is measured on the finger 2. filtering and amplification of the signal 3. signal processing by microprocessor 4. microprocessor outputs the pulse on the seven segment display

Application: Data transfer

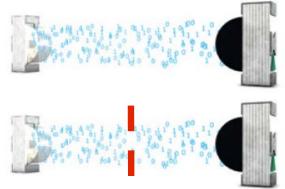
• Why – data transfer?

- Compared to RF easier to use, no radiation restriction
- Need direct field of view a benefit or a drawback?
 - Most secure connection
- Response time with the speed of light
- Remote control
- Private household measurement
 - Electricity, water, heating

Switching Time up to 100 MHz

The extremely fast switching time of a few nanoseconds ensures high data transfer rates.

Application: Detectors


- IR can be used for most detection application
 - Short range or long range
 - As reflective or transmissive detection
- House hold appliances
 - Vacuum robots ambient recognition
 - Smoke detectors
- Industry application
 - Light barriers security zones
 - Hygiene and water saving in public wash rooms
 - Automated doors and barriers
 - Automated lights
 - License plate recognition in parking lots

Transmissive detection

Reflective detection

Summary

• WE welcomes you to the world of Invisible Light

IR Emitter and Detector – the perfect match

- With all standard footprints
- Wide range of viewing angles and power outputs
- As emitter and photodiode or phototransistor

A large field of applications

- From health monitoring and home robots, to industry robots
- Detection and security in your house and at work
- And many more INVISIBLE applications....

• For any questions – please contact your local sales rep

We are here for you now! Ask us your questions in the chat and we will answer them live.

eiSos-webinar@we-online.com eipal.pmhotline@we-online.de