

A Practical Guide to EMI Shielding of Electronic Devices

Agenda

- Introduction
- Basics
- Shielding apertures
- Shielding solutions

1

Introduction

What does "electromagnetic shielding" mean?

Basics

- Electromagnetic fields are radiated from and received by conductive structures.
- Possible antennas:

Cables, interfaces, apertures

Traces, groundplanes, vias, slits

Components, heatsinks, integrated circuits

Basics – Wavelength

 Relation between frequency and wavelength:

$$\lambda_0 = \frac{c_0}{f}$$

• Examples:

$$f = 500 \text{kHz} \rightarrow \lambda_0 = 600 \text{m}$$

 $f = 8 \text{MHz} \rightarrow \lambda_0 = 37,5 \text{m}$
 $f = 100 \text{MHz} \rightarrow \lambda_0 = 3 \text{m}$
 $f = 2,45 \text{GHz} \rightarrow \lambda_0 = 12,5 \text{cm}$

11.06.2019 | Practical shielding guide

Basics – Half-wavelength dipole

- A conductive structure is not a **proper antenna** for each frequency.
- The **relation** between the structure dimension and the wavelength is crucial.
- The relation is optimal if the structure length is equal to half of the wavelength (half-wavelength dipole).
- A significant antenna effect is observable for a length up **one twentieth** of the wavelength.

5

Basics – Elementary dipole

- The most basic antenna is an electric (Hertzian) dipole. Its length *l* is small compared to the wavelength considered.
- Along its dimension a locally constant, temporally changing current I is flowing. Charges are accumulated at the ends.
- The electric dipole generates an electric field.

6

Basics – Elementary dipole

- A second elementary antenna is created by a current loop or magnetic dipole. Its radius R is small compared to the wavelength considered.
- Along its circumference a locally constant, temporally changing current *I* is flowing.
- The magnetic dipole creates a magnetic field.

Basics – Characteristic wave impedance

• The characteristic wave impedance Z_W is equal to the relation of the electric field strength to the magnetic field strength at a distance r from the antenna.

$$Z_{\rm W} = \frac{E}{H}$$

• Characteristic wave impedance of the electric dipole in the **near field**:

$$Z_{\rm W,e} | = Z_{\rm W0} \cdot \frac{\lambda}{2\pi r}$$

• Characteristic wave impedance of the magnetic dipole in the **near field**:

$$Z_{\mathrm{W,m}}\big| = Z_{\mathrm{W0}} \cdot \frac{2\pi r}{\lambda}$$

- The factor $Z_{W0} = \sqrt{\frac{\mu_0}{\epsilon_0}} = 377\Omega$ is named the free-space characteristic wave impedance (far field).
- From an EMC perspective most of the relevant noise sources can be described by one of the elementary dipoles.

11.06.2019 | Practical shielding guide

8

[©] All rights reserved by Wurth Electronics, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

Basics – Characteristic wave impedance

11.06.2019 | Practical shielding guide

Basics – Shielding of electric fields

- Electric fields can be shielded easily.
- Electric field lines start and end on charges.
- It has to be assured that free charges are able to be balanced.
- Shielding effect of electrically conducting and connected plates on a static electric field:

Basics – Shielding of magnetic fields

- Shielding of magnetic fields is more difficult, particularly static and low-frequency fields.
- Categorization of shielding solution types:
 - Against static and low-frequency fields → High-permeable materials
 - Against medium-frequency fields \rightarrow Using of **skin effect**
 - Against high-frequency fields → Reflection and absorption

Basics – Shielding of magnetic fields

- High-permeable materials are used for shielding of static and low-frequency fields (16²/₃ Hz, 50 Hz).
- The shielding effect is more efficient,
 - the higher the permeability,
 - the thicker the shield,
 - the smaller the shielded volume.

Material	Relative permeability $\mu_{ m r}$	
Nickel	100	
Steel	1000	
Stainless steel	500	
Mumetal	25000	

Basics – Theoretical shielding attenuation

11.06.2019 | Practical shielding guide

- The limit for determining the shielding attenuation by **measurement** lies at 120 dB.
- There's no perfect shield, i.e. completely closed.
- There is a greater impact of apertures in the shield on the magnetic shielding attenuation than on the electric shielding attenuation.
- For higher frequencies the decrease in shielding effectiveness due to leakage is more significant than the theoretical shielding attenuation of a material.
- The maximum linear dimension of an aperture is crucial, not its area.

- An aperture with length $\ell = \lambda/2$ shows the same behavior as a half-wavelength dipole.
- When the electric field vector is oriented perpendicularly in relation to the slit, the shielding attenuation at the corresponding frequency is 0 dB.
- If a larger aperture is required, e.g. for ventilation of the interior, the area should be devided into many smaller apertures.

For a two-dimensional breadboard the maximum number of holes lying in a single row is crucial for the reduction in shielding effectiveness.

Shielding attenuation with apertures:

$$A_{\rm S,Ap} = 20 \cdot \log\left(\frac{\lambda}{2 \cdot \ell \cdot \sqrt{n}}\right) dB$$

11.06.2019 | Practical shielding guide

Maximum slit length for 20 dB attenuation:

Frequency in MHz	Length in cm
30	50
50	30
100	15
300	5
500	3
1000	1,5
3000	0,5
5000	0,3

Decrease in shielding attenuation for n > 1:

n	$\Delta A_{\rm S}$ in dB	
2	-3	
4	-6	
6	-8	
10	-10	
20	-13	
40	-16	
80	-19	
100	-20	

11.06.2019 | Practical shielding guide

Shielding solutions – Overview

11.06.2019 | Practical shielding guide

- It is important to ensure a large-scale conductive transition at joints of a casing (edges, covers, doors).
- Joint without a conductive transition:

11.06.2019 | Practical shielding guide

- Conductive fabric gasket consists of foam material, surrounded by nickel-copper fabric. Adhesive tape is attached on one side.
- Maximum degree of protection: IP54

Application examples:

11.06.2019 | Practical shielding guide

• Fire protection in railway applications \rightarrow EN 45545-2:2013+A1:2015 \rightarrow R22/R23

more than you expect

Suitability of material pairings:

Base material	Nickel-copper	Aluminum
Zinc		++
Aluminum		++
Copper	+	_
Tin	+	_
Nickel-silver	+	_
Lead	+	_
Nickel	++	
Silver	++	
Nickel-copper	++	
Gold	++	

11.06.2019 | Practical shielding guide

- Spring contact strips are made of copper-beryllium or stainless steel.
- Application example:

Shielding solutions – Cable

Shielding of cables and cable bundles:

Shielding solutions – Cable

• Shielding of flat wire cables with conductive textile or metallic adhesive tape:

Electric contact at both ends is necessary.

11.06.2019 | Practical shielding guide

Shielding solutions – Interface

Filtered D-SUB interface for RS-232, RS-485 or power supply (max. 5 A @ 100 V_{DC}):

D-SUB filter adapter:

11.06.2019 | Practical shielding guide

Shielding solutions – Board Level Shielding

- Copper groundplanes are useful for electric field shielding.
- Noisy or sensitive components or circuitry can be shielded **locally**.

Important: Low-impedance connection to the local circuit ground

Shielding solutions – Board Level Shielding

• One- or two-piece cabinet:

• SMT clips:

11.06.2019 | Practical shielding guide

Shielding solutions – Board Level Shielding

- Do-it-yourself shielding cabinet:
 - Tin-plated steel plate (0,2 mm)

© All rights reserved by Wurth Electronics, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

Square pattern (5 mm)

- Flexible absorption sheet with adhesive surface for sticking to a circuit board or to the housing
- Mode of operation → Reflection and absorption in the near and far field

11.06.2019 | Practical shielding guide

Complex permeability of WE-FAS materials:

Transmission attenuation dependent on the material (thickness: 0,3 mm):

11.06.2019 | Practical shielding guide

Shielding solutions – Board/housing

Transmission attenuation dependent on the material thickness (material 324; 0,1...1 mm):

- Flexible ferrite sheet with adhesive surface for sticking to a circuit board or to the housing
- Mode of operation → Reflection in the near field, redirection of magnetic field lines
- Applications \rightarrow Near field shielding, NFC, RFID, wireless power transfer (WPT)

Complex permeability of WE-FSFS materials:

- Metallic surfaces in the vicinity of communication coils alter their inductance and detune the resonance.
- Magnetically active sheet inside the gap minimizes the impact of eddy currents inside the metal.

Increase of efficiency for wireless charging coils

Without additional ferrite sheet

With additional ferrite sheet

11.06.2019 | Practical shielding guide

Shielding solutions – Heatsink

• Flexible ferrite sheet with imbedded ceramic particles for heat conduction ($\kappa = 1,4W \cdot m^{-1} \cdot K^{-1}$)

- Surface-solderable **contact springs**, made of copper-beryllium or phosphor-bronze
- Plating:
 - Au: 38 nm
 - Ni: 0,1...0,5 µm
 - Sn: 0,8...2 μm
- Phosphor-bronze is suitable for power circuitry currents.

11.06.2019 | Practical shielding guide

- Contact springs lose their resetting ability (elasticity) after excessive compression.
- Special designs avoid excessive compression → Compression Security System

 Contact springs can be used as a link between two RF circuits or as a connection point for RF antenna modules.

- Surface-solderable cellular block with tin plating
- Can be utilized like a contact spring
- Optimum compression: 20...70%

Shielding solutions – Grounding

- Conductive casing parts and groundplanes of separate circuit boards should have a low-impedant connection.
- Mechanical variants of a connection: Grounding strip Spacer

11.06.2019 | Practical shielding guide