

Jürgen Wolf

Andreas Nies Jens Töbeck

Würth Elektronik GmbH & Co. KG
Circuit Board Technology

Agenda

- **Nutzenauslegung**
- **Material Walls Material Wahl**
- **Lagenaufbauten**
- Mechanische Bearbeitung
- **Erweiterte Technologien**
- Weitere Tipps & Tricks
- **Zusammenfassung**

Jürgen Wolf

Würth Elektronik GmbH & Co. KG Leitung Advanced Solution Center

Agenda

Nutzenauslegung

Kupferpreisentwicklung und Materialwahl

Lagenaufbauten

Mechanische Bearbeitung

Erweiterte Technologien

Weitere Tipps & Tricks

Zusammenfassung

Wie laste ich den Fertigungsnutzen ideal aus?

Der Hauptfaktor: Wie ist der Fertigungsnutzen ausgelastet?

- Hintergrundwissen:
 - PCB-Materialien werden in großen Tafeln gefertigt
 Für EU und USA werden zu 90% diese Tafel-Formate verwendet:

US-Format: 1.225 x 925 mm²

Uni-Format: 1.225 x 1.070 mm²

95% der Leiterplattenfertiger in EU & US arbeiten daher mit diesen Formaten:

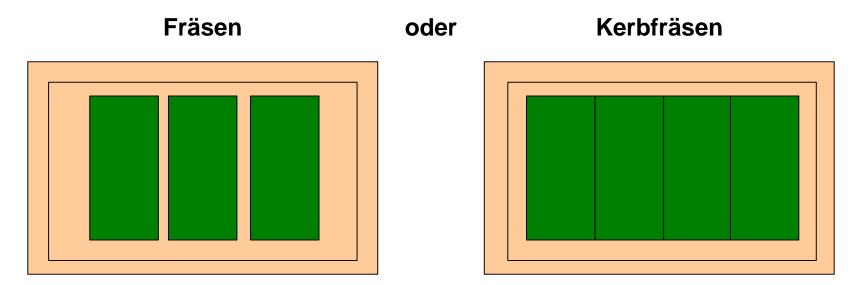
• 460 x 305 mm² (1/8 US-Format) WE Musterformat

606 x 458 mm² (1/4 US-Format) WE Standardformat

606 x 528 mm² (1/4 Uni-Format) WE Jumboformat

606 x 458 mm² × 460 x 305 mm²

Wie laste ich den Fertigungsnutzen ideal aus?



Der Hauptfaktor: Wie ist der Fertigungsnutzen ausgelastet?

Jeder LP-Hersteller benötigt einen Registrierungs- und Beschriftungsrand

Nicht nutzbare Fläche!

Beispiel: Einzelleiterplatten

In diesem Beispiel: 33% mehr Leiterplatten auf dem Fertigungsnutzen

Wie laste ich den Fertigungsnutzen ideal aus?

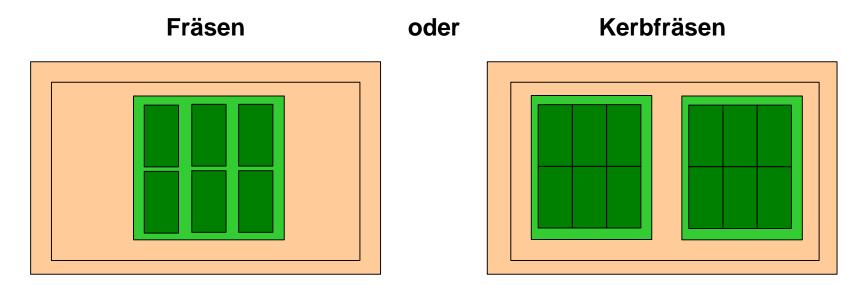
Der Hauptfaktor: Wie ist der Fertigungsnutzen ausgelastet?

Jeder LP–Hersteller benötigt einen Registrierungs- und Beschriftungsrand ⇒ Nutzbare Fläche!

Beispiel: Einzelleiterplatten – Je kleiner die PCB, desto grösser die Auswirkung!

Fräsen	oder	Kerbfräsen
Fertigungsformat RAS 460,00 * 305,00 Fertigungsnutzen RT [RT]		Fertigungsformat RAS 460,00 * 305,00 Fertigungsnutzen RT [R

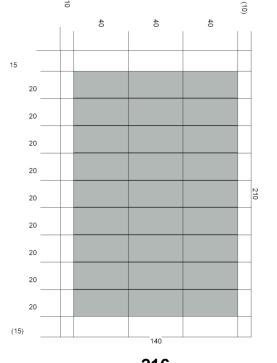
In diesem Beispiel: 56 LPs vs. 85 LPs

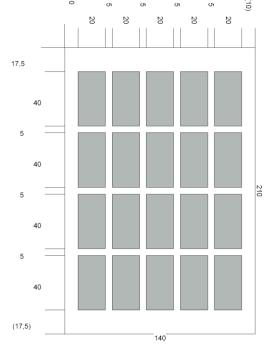

Wie laste ich den Fertigungsnutzen ideal aus?

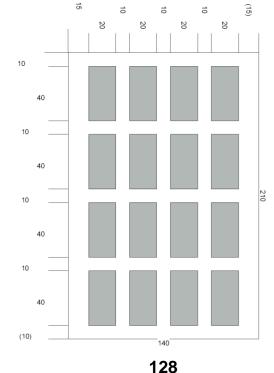
Der Hauptfaktor: Wie ist der Fertigungsnutzen ausgelastet?

Jeder LP-Hersteller benötigt einen Registrierungs- und Beschriftungsrand ⇒ Nutzbare Fläche!

Beispiel: Leiterplatten im Bestücknutzen


In diesem Beispiel: 100% mehr Leiterplatten auf dem Fertigungsnutzen


Wie laste ich den Fertigungsnutzen ideal aus?



Berechnungsgrundlage:

- ML6 / Basismaterial T_g150
- PCB 20 x 40 mm²
- Liefernutzen 210 x 140 mm²
- 100 μ m L/S
- 500 Bohrungen
- 0,20 mm kleinster Bohr-Ø
- Chem. Ni/Au

PCB pro Fertigungsnutzen

Anzahl Fertigungsnutzen (1.000 PCBs bestellt)

PCB pro Liefernutzen

PCB Kontur

PCB Abstand im Liefernutzen

Preisindikator

216 5 27 gekerbt 0,00 mm

100%

160 7 20 gefräst 5,00 mm 117%

8 16 **gefräst** 10,00 mm **131%**

Wie laste ich den Fertigungsnutzen ideal aus?

Der Hauptfaktor: Wie ist der Fertigungsnutzen ausgelastet?

WE-Format		Muster-Format	Standard-Format	Jumbo-Format
Technologien		Alle Technologien	Basic, Starrflex & HDI	Basic & HDI
Werk		Rot am See	Niedernhall	Schopfheim
			Schopfheim bei Sonderaufbauten	Niedernhall auf Nachfrage
Zuschnitt		460 x 305 mm ²	606 x 458 mm ²	606 x 528 mm ²
Nutzbare Fläche		426 x 271 mm ²	572 x 424 mm ²	570 x 500 mm ²
	Anzahl Liefernutzen	Abmessungen Liefernutzen		
Optimaler Liefernutzen	1	426 x 271 mm ²	572 x 424 mm ²	570 x 500 mm ²
für	2	271 x 213 mm ²	424 x 286 mm ²	500 x 285 mm ²
geritzte Konturen	4	213 x 135 mm ²	286 x 212 mm ²	285 x 250 mm ²
	6	142 x 135 mm ²	212 x 190 mm ²	250 x 190 mm ²
	8	135 x 106 mm ²	212 x 143 mm ²	250 x 142 mm ²
	9	142 x 90 mm ²	190 x 141 mm ²	190 x 166 mm ²
	12	106 x 90 mm ²	143 x 141 mm ²	166 x 142 mm ²
	15	90 x 85 mm ²	141 x 114 mm ²	166 x 114 mm ²

Tipps:

- Nutzenrand min. 5 mm
- Nutzenrand 8 10 mm
 bei gefräster LP-Kontur
- 2 Nutzenränder mit
 5 10 mm bei geritzter
 LP-Kontur
- Nutzengröße sollte an LP-Dicke angelehnt werden (je dünner desto kleiner)

Agenda

Nutzenauslegung

Material Walls Kupferpreisentwicklung und Material Wahl

Lagenaufbauten

Mechanische Bearbeitung

Erweiterte Technologien

Weitere Tipps & Tricks

Zusammenfassung

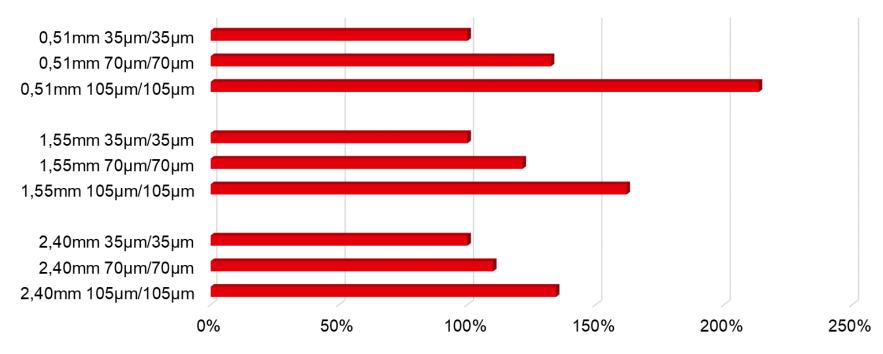
Entwicklung Kupferpreis

Rolle des Materialpreises beim Leiterplattenpreis

Kupferpreis:

Entwicklung an der Rohstoffbörse in London

> Zeitraum: Jan. 2016 bis Juni 2020

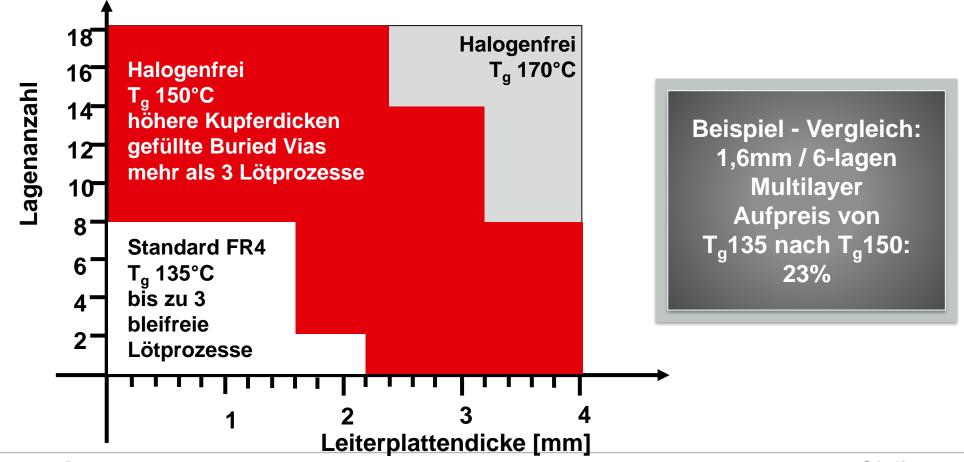

Quelle: http://www.boerse.de – Daten abgerufen am 22.06.2020

Entwicklung Kupferpreis

Rolle des Materialpreises beim Leiterplattenpreis

Vergleich Materialpreise Einkauf FR4 T_g150 (Stand 09.07.2020)

Kupfer spielt also eine wichtige Rolle im Leiterplattenpreis!


Daher die Frage: Was ist nötig, oder was ist möglich?

Materialauswahl

Wann soll ich welches Basismaterial nehmen?

Eine kleine Empfehlung für die Basismaterialien bei Würth Elektronik

Agenda

Nutzenauslegung

Kupferpreisentwicklung und Materialwahl

Lagenaufbauten

Mechanische Bearbeitung

Erweiterte Technologien

Weitere Tipps & Tricks

Zusammenfassung

Lagenaufbau

Wie beeinflusst die Leiterplattenkonstruktion den Preis?

Vergleich eines 4-lagigen Multilayers mit unterschiedlichen Dicken

Standard: 1,55 mm / 1,60 mm

Optimum: 1,00 mm

Weitere Standards:

0,80mm / 2,00 mm / 2,40 mm

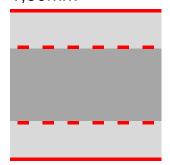
0,50mm

ML4 TG150 0.50 35

1x 0.10mm-035+035 4x Prepreg 1080

Preisindikator 107%

1,00mm



ML4_TG150_1.00_35

1x 0.41mm-035+035 4x Prepreg 2116

Preisindikator 96%

1,60mm

ML4_TG150_1.60_35

1x 0.71mm-035+035 4x Prepreg 7628

Preisindikator 100%

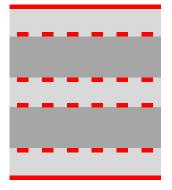
3,20mm

ML4_TG150_3.20_35

1x 2.40mm-035+035 4x Prepreg 7628

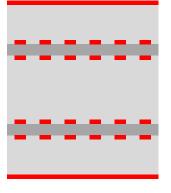
Preisindikator 137%

Seite 16


Lagenaufbau

Wie beeinflusst die Leiterplattenkonstruktion den Preis?

Vergleich eines 6-lagigen Multilayers: Standard vs. individuellem Aufbau mit 1,60 mm


Standardaufbau

2x 0.36mm-035+035 6x Prepreg 2116

Preisindikator 100%

Spezifischer Aufbau

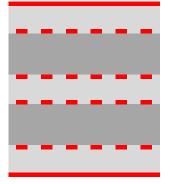
2x 0.10mm-035+035 2x Prepreg 2116 8x Prepreg 7628

Preisindikator 116%

Mehrkosten durch:

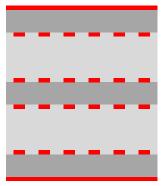
- **Handling Dünnlaminat**
- 4 Prepregs mehr pro Aufbau

www.we-online.com


Lagenaufbau

Wie beeinflusst die Leiterplattenkonstruktion den Preis?

Vergleich eines 6-lagigen Multilayers: Standard vs. individuellem Aufbau mit 1,60 mm


Standardaufbau

2x 0.36mm-035+035 6x Prepreg 2116

Preisindikator 100%

Kernverpressung

3x 0.20mm-035+035 4x Prepreg 2116 2x Prepreg 7628

Preisindikator 122%

Mehrkosten durch:

- Mehrfachbelichtung der äußeren Kerne (Ablauf quasi wie eine 8lagige LP)
- Mehr Kerne

Weitere Kostentreiber

Füllkerne im Aufbau

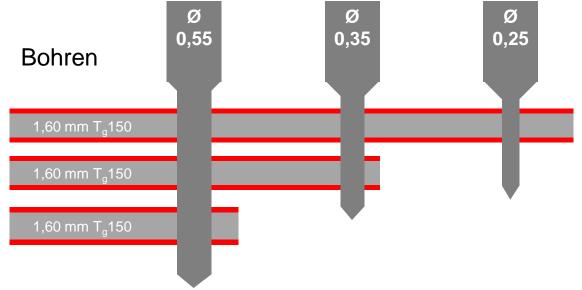
Agenda

Nutzenauslegung

Kupferpreisentwicklung und Materialwahl

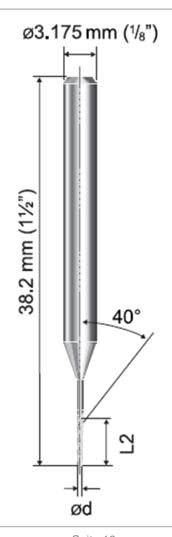
Lagenaufbauten

Mechanische Bearbeitung


Erweiterte Technologien

Weitere Tipps & Tricks

Zusammenfassung

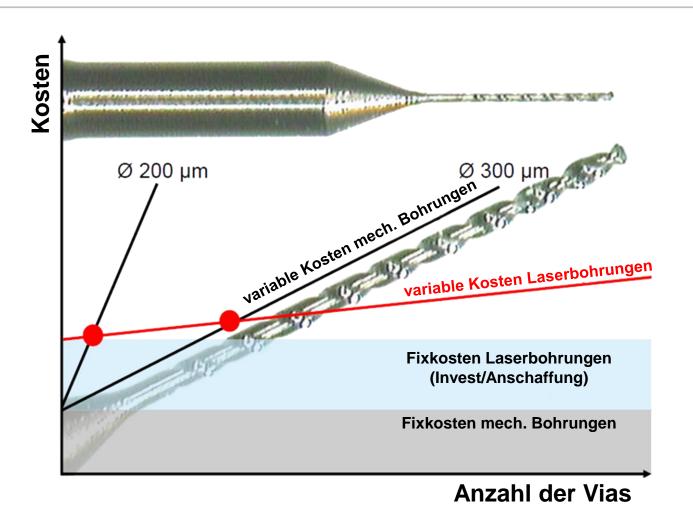


Welchen Einfluss hat der Bohr-Ø auf die Leiterplattenkosten?

Preisindikator nur Bohrprozess				
Bohrerverbrauch bei 15.000 fertigen Vias				
Bohrdauer für 15.000 fertigen Vias				
Paketierung				
Standzeit				

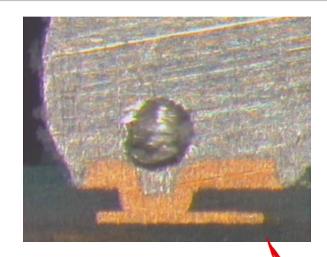
1.250 Hübe 3er Pack	1.000 Hübe 2er Pack	500 Hübe 1er Pack
0,2 h	0,4 h	0,8 h
4	7,5	30
100%	200%	460%

Welchen Einfluss hat der Bohr-Ø auf die Leiterplattenkosten?


Zum Vergleich:

Ø 0,5 mm, Ø 0,35 mm und Ø 0,25 mm Bohrer auf 5 mm x 5 mm kariertem Papier

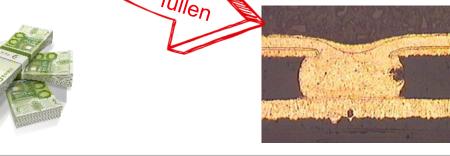
Welchen Einfluss hat der Bohr-Ø auf die Leiterplattenkosten?

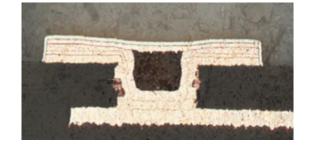

Ø 0,2 mm (0,55 € pro Bit) Lebensdauer: 750 Hübe Bohrfrequenz: 3 / s

Ø 0,3 mm (0,50 € pro Bit) Lebensdauer: 1.000 Hübe Bohrfrequenz: max. 8 / s

Microvia Ø 0,125 mm Bohrfrequenz: 150–180 / s

Microvias füllen oder nicht? Das ist hier die Frage!

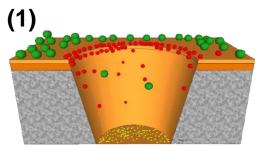



IPC-7095C - Tabelle A-3 - Klasse III: Max. "22% of the image diameter"

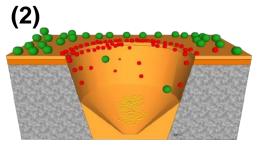
Die Entstehung von Voids ist u.a. abhängig von:

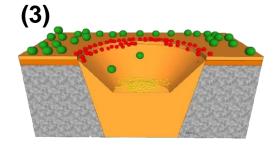
- Flussmittel / Lotpaste
- Temperaturprofil des Lötprozesses
- Gleichmäßig Er- bzw. Durchwärmung der Leiterplatte

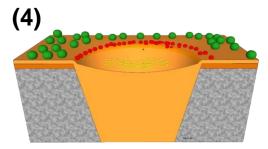
Jeder Anwender muss für sich definieren, wie gefertigt wird!



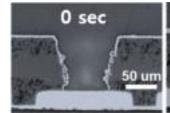
Microvias füllen oder nicht? Das ist hier die Frage!

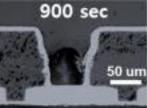


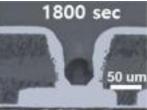

Ablauf Cu-Filling Prozess (Quelle/Veröffentlichung: MacDermidEnthone Electronic Solutions / 2018)

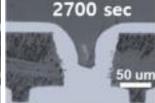


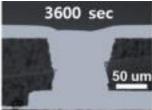
Brightener

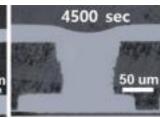


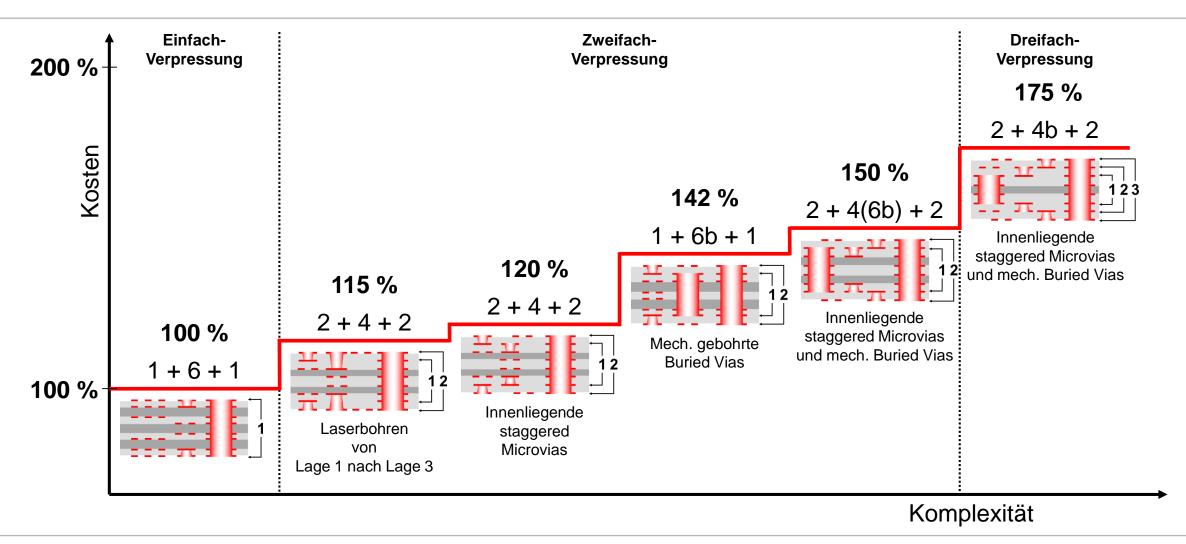

Funktion: Moleküle belegen die Oberfläche und behindern ein Abscheiden von Cu


Funktion: Moleküle sammeln sich am Ort der größten Stromstärke und behindern ein Abschieden von Cu

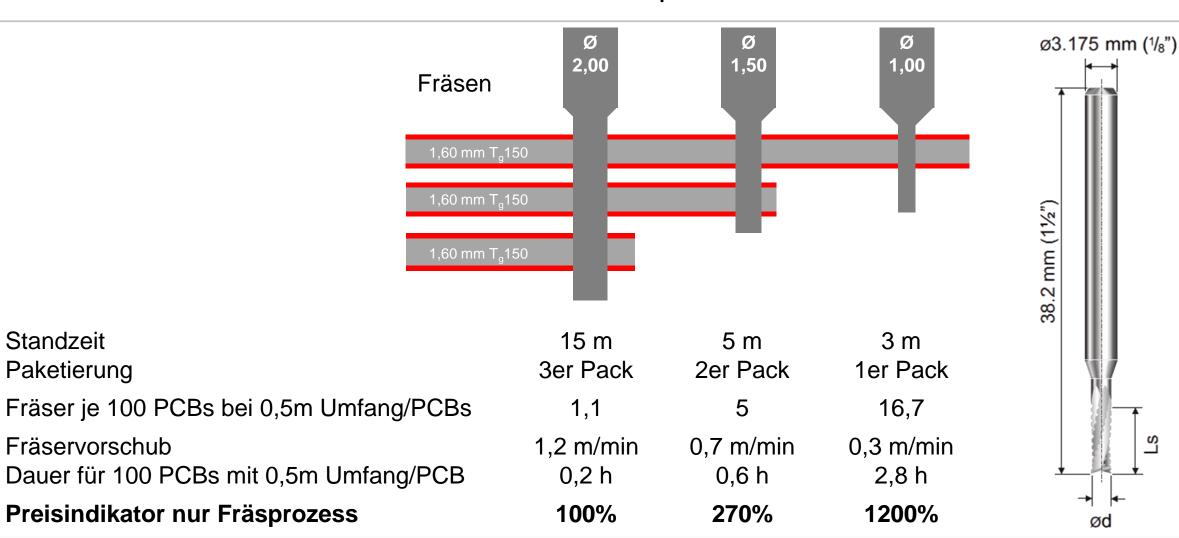

Funktion: Glanzbildner zur Verringerung der Cu-Kristallgrößen


Zeitlicher Ablauf (Quelle/Veröffentlichung: KAIST / 2019)

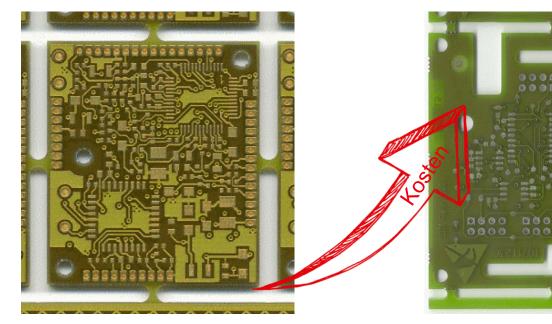




Prozessdauer Faktor 2-3 länger im Vergleich zu Standard


Welchen Einfluss hat der HDI-Lagenaufbau?

Welchen Einfluss hat der Fräs-Ø auf die Leiterplattenkosten?



Was hat noch Einfluss auf den Leiterplattenpreis?

Fräskonturen

Aufwändige Fräskonturen können die Fräswege verlängern und den Fräserdurchmesser negative beeinflussen

Standard Fräskontur

- 4x Richtungswechsel
- Fräserdurchmesser 2,4 mm

Aufwendige Fräskontur

- ca. 30x Richtungswechsel
- hohe Fräszeit
- Fräserdurchmesser 1,8 mm

Agenda

Nutzenauslegung

Kupferpreisentwicklung und Materialwahl

Lagenaufbauten

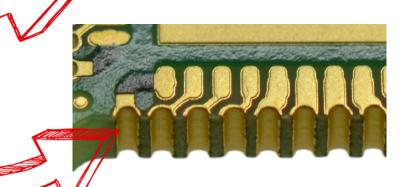
Mechanische Bearbeitung

Erweiterte Technologien

Weitere Tipps & Tricks

Zusammenfassung

Was hat noch Einfluss auf den Leiterplattenpreis?


Weitere Kostentreiber!

Leiterplattendicke/Lagenanzahl⇒ nicht nur relevant beim Bohren & Fräsen....

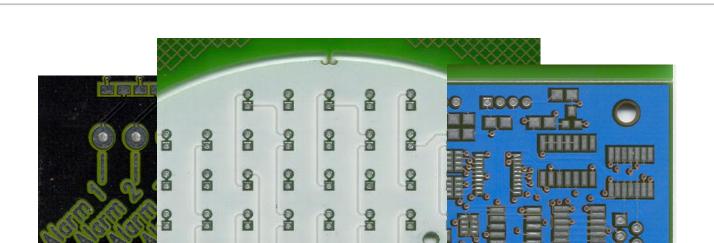
Anzahl Verpressungen

Kantenmetallisierung

Halboffene DK-Bohrungen ("Briefmarken-Design", Castellations)

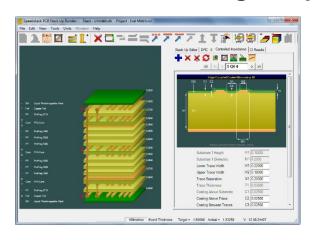
Was hat noch Einfluss auf den Leiterplattenpreis?

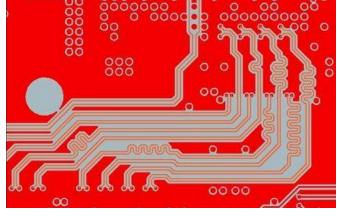
Weitere Kostentreiber!


Farbiger Löstopplack

- Weiß / Schwarz / Rot / Blau
- Problem: Nachfrage extrem gering
- Frage: Muss es immer
 Lötstopp sein oder reicht
 evtl. Kennzeichnung durch

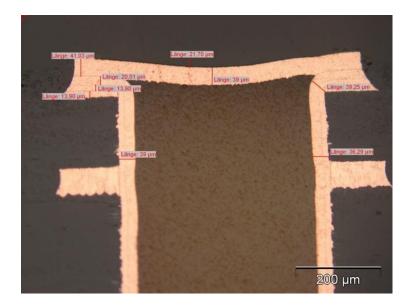
Beschriftungsdruck


Wie klein muss gedruckt werden – Gefahr: Andrucken von Pads

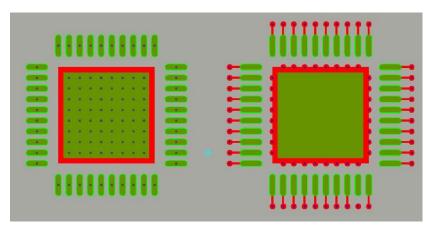


Was hat noch Einfluss auf den Leiterplattenpreis?

Geforderte bzw. benötigte Impedanzen


- Impedanz-gefertigte Leiterplatten
 - ⇒ Berechnung Lagenaufbau und Leiterbahnen
- Impedanz-geprüfte bzw. -kontrollierte Leiterplatten
 - ⇒ zusätzlich mit (mehreren) Testcoupon
 - ⇒ reduzierte Anzahl PCBs je Panel

Was hat noch Einfluss auf den Leiterplattenpreis?



IPC 4761 – Filled and Capped Via (Typ VII Via)
 ⇒ Via mit Harz gefüllt und überkupfert!

Notwendig oder mit intelligentem
Design zu vermeiden?

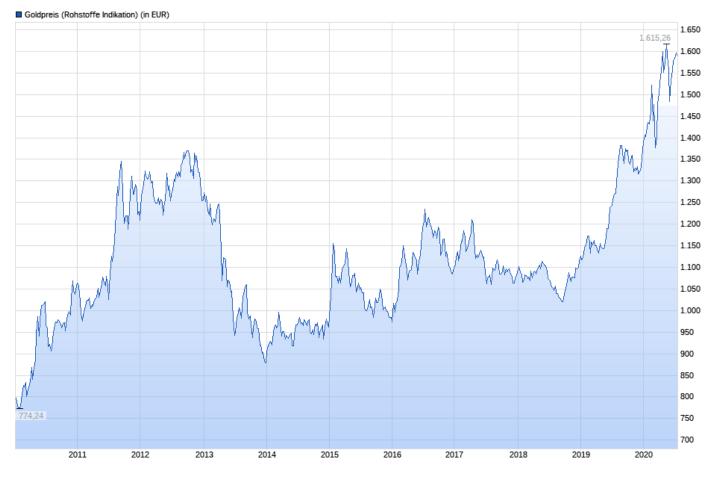
Was hat noch Einfluss auf den Leiterplattenpreis?

Forderung: IPC Klasse 3

Oft wird die Forderung 25µm Kupfer in der Hülse mit der Forderung der Fertigung nach IPC Class 3 verwechselt:

- 25µm Hülsenkupfer ist nur ein Teil der Forderung von IPC Class 3

Was hat noch Einfluss auf den Leiterplattenpreis?

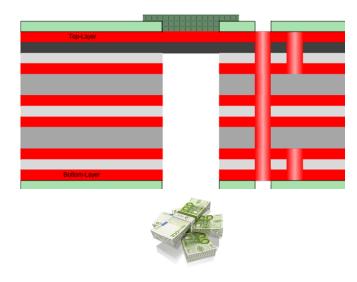


Galvanisch Gold

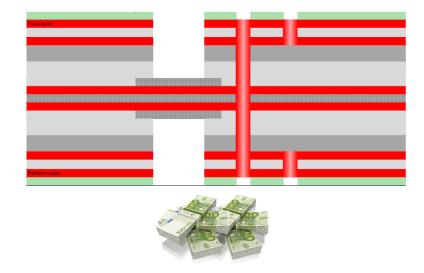
Einsatz von galv. Gold

- oft im Steckbereich als abriebfeste
 Oberfläche
- meist selektiv in Kombination mit chem. NiAu
- mit Schichtstärken bis zu 4µm

Preisindikator: bis zu 500% oder mehr (je nach aktuellem Goldpreis)



Quelle: http://www.boerse.de – Daten abgerufen am 13.07.2020


Wie sieht es mit Starrflex-Aufbauten aus?

Starrflex 1F-5Ri / HDI 1-4-1

Starrflex 2Ri-2F-2Ri / HDI 1-4-1

- Mechanischer Tiefenfräs-Aufwand einseitig vs. beidseitig
- Enorme Preisunterschiede im Flex-Material: Kupfer ein-/ beidseitig
- Siebgedruckter Flexlack günstiger als gefrästes und aufgepresstes Coverlay
- Für höhere Zuverlässigkeit bei xRi-2F-xRi: Partiell Coverlay nötig

Agenda

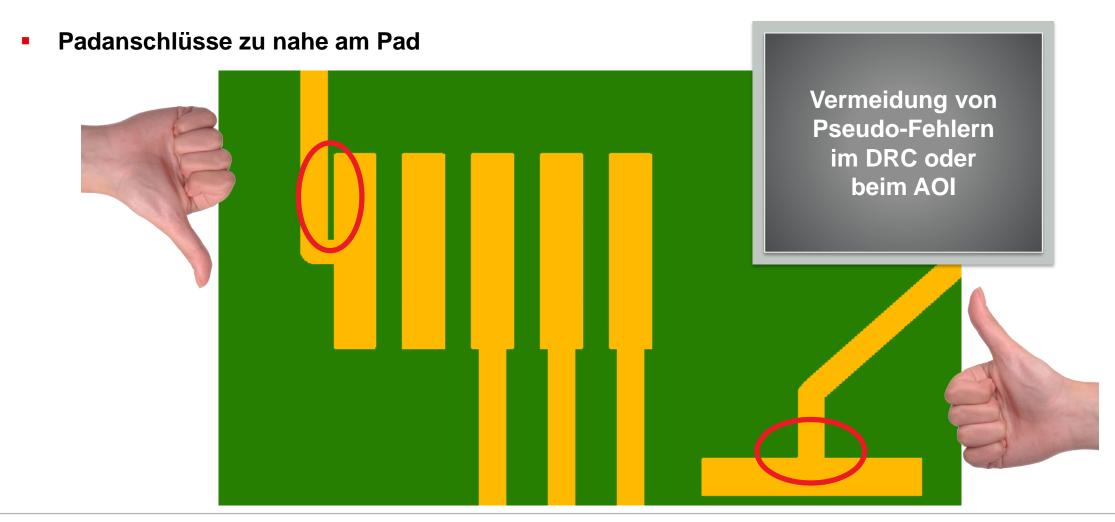
Nutzenauslegung

Kupferpreisentwicklung und Materialwahl

Lagenaufbauten

Mechanische Bearbeitung

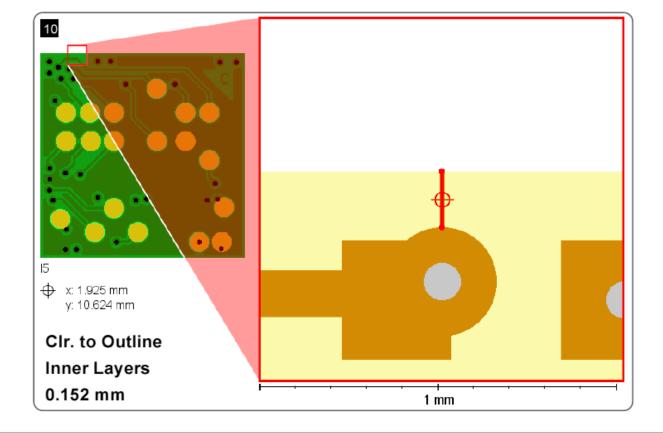
Erweiterte Technologien


Weitere Tipps & Tricks

Zusammenfassung

Weitere Tipps & Tricks

Fehlervermeidung



Weitere Tipps & Tricks

Fehlervermeidung

Abstände von Flächen, Leitungen und Bohrungen inkl. Pads zum Leiterplattenrand

Weitere Tipps & Tricks

Datenausgabe – Gerber-Format

RS-274-D Standard Gerber

⇒ obsolet, ersetzt worden durch

RS-274X Extended Gerber

Ausgabeparameter:

- Oft voreingestellte Parameter bei modernen Design ungenau:
 - 2.3 Inches ⇒ min. Auflösung 25,4 µm
 - Besser: 2.5 Inches (min. Auflösung 0,254 μm) oder
 - 4.4 metrisch (min. Auflösung 0,1 μm)
- Keine Vermischung:

Drilldaten und Gerberdaten mit identischem Ausgabeformat wegen Toleranzkette (speziell bei HDI-Aufbauten)

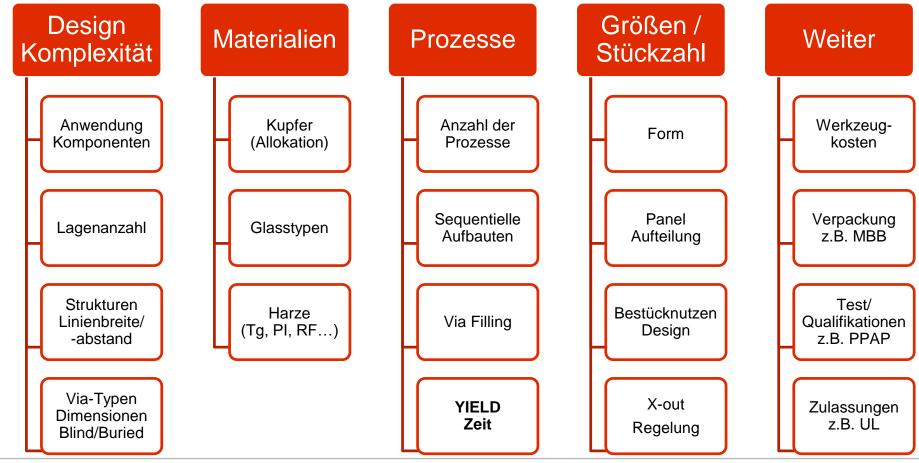
Agenda

Nutzenauslegung

Kupferpreisentwicklung und Materialwahl

Lagenaufbauten

Mechanische Bearbeitung


Erweiterte Technologien

Weitere Tipps & Tricks

Zusammenfassung

Dinge, die bei der Leiterplattenherstellung zu beachten sind:

Vielen Dank für Ihre Aufmerksamkeit!

Welche Applikation haben Sie?

Wie kann WE

Sie unterstützen?

Würth Elektronik GmbH & Co. KG
Advanced Solutions Center
+49 7940 946-1234
asc@we-online.de