




#### Jürgen Wolf


Andreas Nies Jens Töbeck

Würth Elektronik GmbH & Co. KG Circuit Board Technology



#### Agenda

- PCB array
- Copper price development and choice of materials
- PCB stackup
- Mechanical processing
- **M** Advanced technologies
- More tips & tricks
- **Summary**



Jürgen Wolf

Würth Elektronik GmbH & Co. KG Head of Advanced Solution Center



#### **Agenda**



Copper price development and choice of materials

**PCB** stackup

**Mechanical processing** 

**Advanced technologies** 

More tips & tricks

**Summary** 



## How to utilize and occupy the manufacturing panel properly?

#### The Key Factor: How is the manufacturing panel occupied with PCBs?

- Background information:
  - PCB materials are manufactured in large panels
     90% of EU and US manufacturers of FR4 uses these formats:

• US-Format: 1.225 x 925 mm<sup>2</sup>

• Uni-Format: 1.225 x 1.070 mm<sup>2</sup>

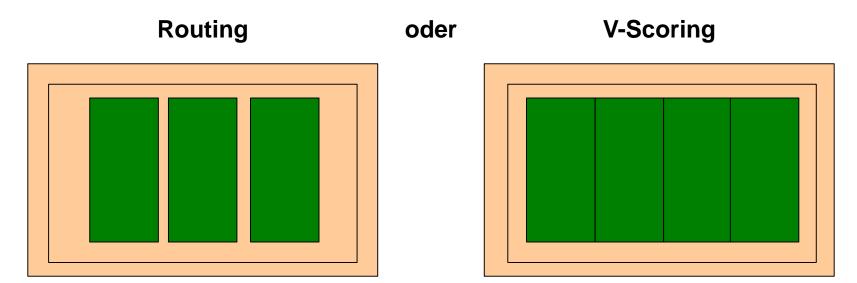
95% of PCB manufacturers in EU & US use these panel formats:

• 460 x 305 mm<sup>2</sup> (1/8 US-Format) WE sample format

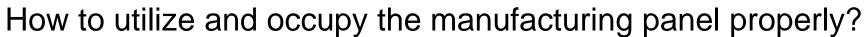
606 x 458 mm<sup>2</sup> (1/4 US-Format) WE standard format

606 x 528 mm<sup>2</sup> (1/4 Uni-Format) WE jumbo format

606 x 458 mm<sup>2</sup> × 460 x 305 mm<sup>2</sup>




How to utilize and occupy the manufacturing panel properly?


The Key Factor: How is the manufacturing panel occupied with PCBs?

Every PCB manufacturer needs a border for registration and labeling ⇒ Non-useable space!

**Example: Single PCBs** 



In this example: 33% more circuit boards on the production panel





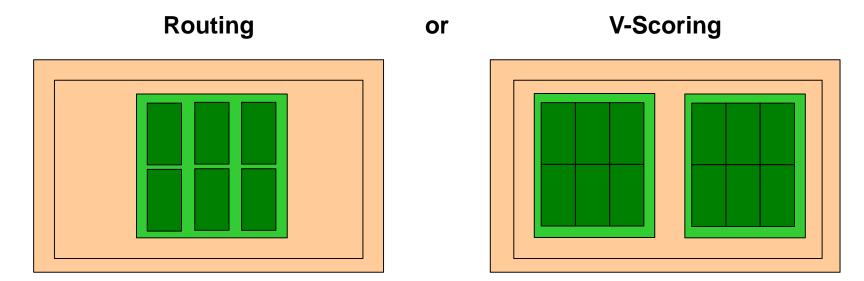
The Key Factor: How is the manufacturing panel occupied with PCBs?

Every PCB manufacturer needs a border for registration and labeling ⇒ Non-useable space!

Example: Single PCBs – The smaller the PCB, the greater the effect!

| Routing                                                       | or | V-Scoring                                                     |
|---------------------------------------------------------------|----|---------------------------------------------------------------|
| Fertigungsformat RAS 480,00 * 305,00 Fertigungsnutzen RT [RT] |    | Fertigungsformat RAS 460,00 * 305,00 Fertigungsnutzen RT [RT] |
|                                                               |    | •                                                             |
|                                                               |    |                                                               |
|                                                               |    |                                                               |
|                                                               |    |                                                               |
|                                                               |    |                                                               |
|                                                               |    |                                                               |
|                                                               |    |                                                               |
|                                                               |    |                                                               |
|                                                               |    |                                                               |
|                                                               |    | • <del>                                   </del>              |
|                                                               |    |                                                               |

In this example: 56 PCBs vs. 85 PCBs



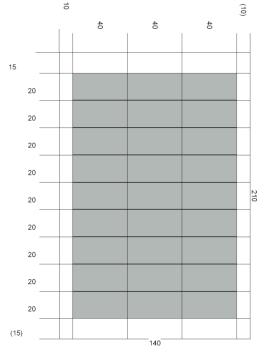

How to utilize and occupy the manufacturing panel properly?

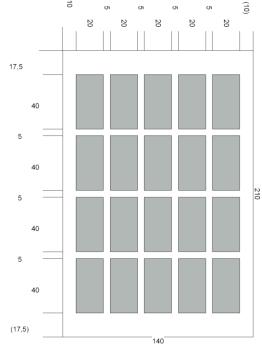
The Key Factor: How is the manufacturing panel occupied with PCBs?

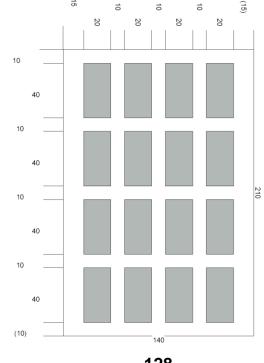
Every PCB manufacturer needs a border for registration and labeling ⇒ Non-useable space!

**Example: PCBs in array** 




In this example: 100% more circuit boards on the production panel


## How to utilize and occupy the manufacturing panel properly?




#### Calculation Basis:

- ML6 / Base Material T<sub>g</sub>150
- PCB size 20 x 40 mm²
- Array size 210 x 140 mm²
- 100  $\mu$ m L/S
- 500 drills
- 0,20 mm smallest drill-Ø
- ENIG



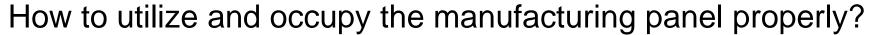




| <b>PCBs</b> | on a  | production | panel |
|-------------|-------|------------|-------|
| . 503       | 011 0 | production | Paric |

Number of production panels (1.000 PCBs ordered)

PCBs in an array


**PCB** outline

PCB distance in array

**Price indicator** 



0,00 mm **100%**  160 7 20 routed 5,00 mm 117% 128 8 16 routed 10,00 mm 131%





#### The Key Factor: How is the manufacturing panel occupied with PCBs?

| WE-Format         |                  | Sample format             | Standard format                              | Jumbo format              |
|-------------------|------------------|---------------------------|----------------------------------------------|---------------------------|
| Technologies      |                  | All technologies          | Basic, flex-rigid & HDI                      | Basic & HDI               |
| Plant             |                  | Rot am See                | Niedernhall                                  | Schopfheim                |
|                   |                  |                           | Used in Schopfheim for special constructions | Niedernhall<br>on demand  |
| Panel size        |                  | 460 x 305 mm <sup>2</sup> | 606 x 458 mm <sup>2</sup>                    | 606 x 528 mm <sup>2</sup> |
| Usable area       |                  | 426 x 271 mm <sup>2</sup> | 572 x 424 mm <sup>2</sup>                    | 570 x 500 mm <sup>2</sup> |
|                   | Number of arrays | dimensions<br>array       |                                              |                           |
| Best array        | 1                | 426 x 271 mm <sup>2</sup> | 572 x 424 mm <sup>2</sup>                    | 570 x 500 mm <sup>2</sup> |
| for               | 2                | 271 x 213 mm <sup>2</sup> | 424 x 286 mm <sup>2</sup>                    | 500 x 285 mm <sup>2</sup> |
| V-scored outlines | 4                | 213 x 135 mm <sup>2</sup> | 286 x 212 mm <sup>2</sup>                    | 285 x 250 mm <sup>2</sup> |
|                   | 6                | 142 x 135 mm <sup>2</sup> | 212 x 190 mm <sup>2</sup>                    | 250 x 190 mm <sup>2</sup> |
|                   | 8                | 135 x 106 mm <sup>2</sup> | 212 x 143 mm <sup>2</sup>                    | 250 x 142 mm <sup>2</sup> |
|                   | 9                | 142 x 90 mm <sup>2</sup>  | 190 x 141 mm <sup>2</sup>                    | 190 x 166 mm <sup>2</sup> |
|                   | 12               | 106 x 90 mm <sup>2</sup>  | 143 x 141 mm <sup>2</sup>                    | 166 x 142 mm <sup>2</sup> |
|                   | 15               | 90 x 85 mm <sup>2</sup>   | 141 x 114 mm <sup>2</sup>                    | 166 x 114 mm <sup>2</sup> |

#### Tips:

- Edge of array edge min. 5 mm
- Edge of array 8 10 mm for routed outlines
- 2 edges with 5 10 mm for V-scored outlines
- Size of array should be based on thickness of PCB (the thinner the smaller)



#### **Agenda**

**PCB** array

Copper price development and choice of materials

PCB stackup

**Mechanical processing** 

Advanced technologies

More tips & tricks

**Summary** 

# **Development of copper prize**

## Role of material price in PCB price

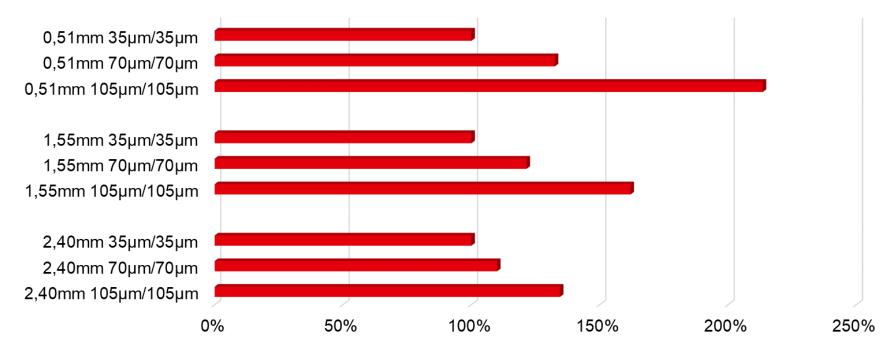


#### **Copper price:**

Developments on the London commodity exchange

> Time period: Jan. 2016 until June 2020




Source: http://www.boerse.de - data downloaded on 22.06.2020

# **Development of copper prize**

Role of material price in PCB price



### Comparison of material purchasing prices for FR4 T<sub>g</sub>150 (as of July 2020)



Copper plays an important role in the price of PCBs!

Hence the question: What is necessary or what is possible?

## **Choice of material**

When to use which base material?



A small recommendation for the usage of base materials at Würth Elektronik





#### **Agenda**

**PCB** array

Copper price development and choice of materials

PCB stackup

**Mechanical processing** 

**Advanced technologies** 

More tips & tricks

**Summary** 

# Layer stackup

## How does the PCB construction influence the price?



#### Comparison of a 4-layer multilayer with different thicknesses

Standard: 1,55 mm / 1,60 mm

Optimum: 1,00 mm

Further standards:

0,80mm / 2,00 mm / 2,40 mm



ML4 TG150 0.50 35

1x 0.10mm-035+035 4x prepreg 1080

**Price indicator 107%** 





ML4\_TG150\_1.00\_35

1x 0.41mm-035+035 4x prepreg 2116

**Price indicator 96%** 

### 1,60mm



ML4\_TG150\_1.60\_35

1x 0.71mm-035+035 4x prepreg 7628

**Price indicator 100%** 

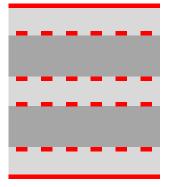
#### 3,20mm



ML4\_TG150\_3.20\_35

1x 2.40mm-035+035 4x prepreg 7628

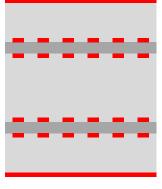
**Price indicator 137%** 


# Layer stackup

## How does the PCB construction influence the price?



Comparison of a 6-layer multilayer: 1,60 mm standard vs. individual stackup


#### Standard stackup



2x 0.36mm-035+035 6x prepreg 2116

**Price indicator 100%** 

#### Specific stackup

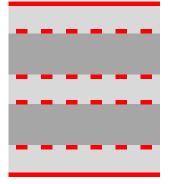


2x 0.10mm-035+035 2x prepreg 2116 8x prepreg 7628

**Price indicator 116%** 

#### Additional costs:

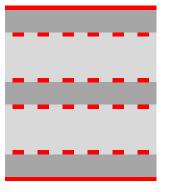
- Handling thin laminate
- 4 prepregs more in stackup


# Layer stackup

## How does the PCB construction influence the price?



Comparison of a 6-layer multilayer: 1,60 mm standard vs. individual stackup


#### Standard stackup



2x 0.36mm-035+035 6x prepreg 2116

**Price indicator 100%** 

#### Core-based stackup



3x 0.20mm-035+035 4x prepreg 2116 2x prepreg 7628

**Price indicator 122%** 

#### **Additional cost:**

- Multiple exposure of the outer layer cores (process quasi like an 8layer PCB)
- More cores

#### **Further cost drivers**

Filling cores in stackup



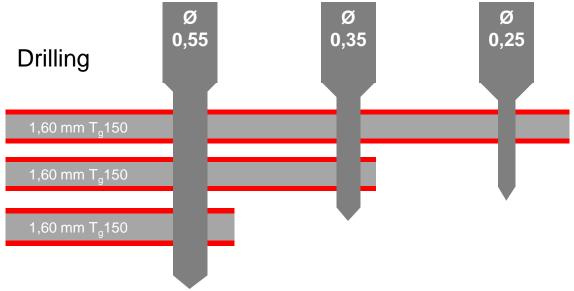
#### **Agenda**

**PCB** array

Copper price development and choice of materials

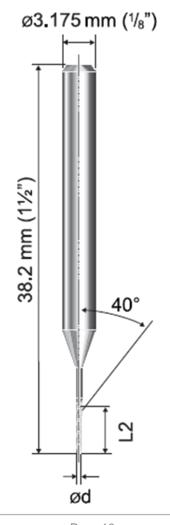
PCB stackup

#### Mechanical processing


Advanced technologies

More tips & tricks

**Summary** 


Which influence do the drilling tools have on the PCB costs?





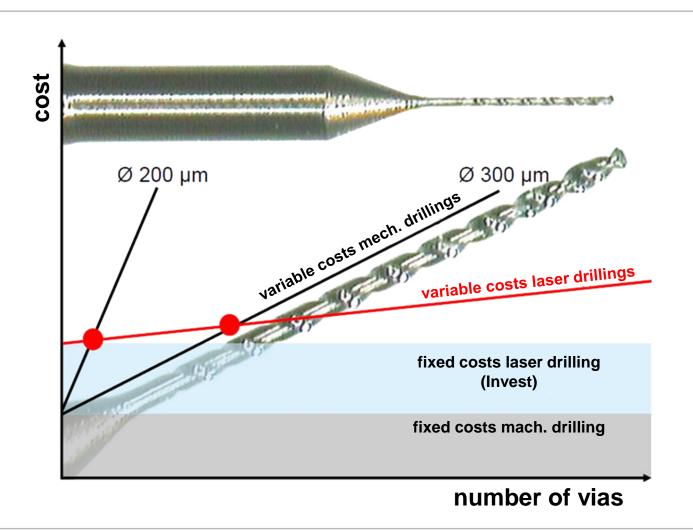
Tool life
Panel stacking
Time to drill 15.000 vias
Usage of drill bits for 15.000 vias
Price indicator (only drilling process)

| 100%                     | 200%                     | 460%                   |
|--------------------------|--------------------------|------------------------|
| 4                        | 7,5                      | 30                     |
| 0,2 h                    | 0,4 h                    | 0,8 h                  |
| 1.250 strokes stack of 3 | 1.000 strokes stack of 2 | 500 strokes stack of 1 |
|                          |                          |                        |



WÜRTH EI EKTRONI

Which influence do the drilling tools have on the PCB costs?


Comparison:

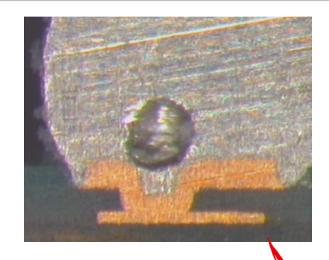
Ø 0,5 mm, Ø 0,35 mm und Ø 0,25 mm drill bits on 5 mm x 5 mm checkered paper



Which influence do the drilling tools have on the PCB costs?





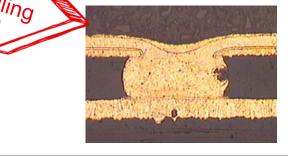

Ø 0,2 mm (0,55 € pro Bit) Tool life: 750 strokes Drilling frequency: 5 / s

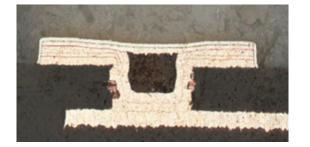
Ø 0,3 mm (0,50 € pro Bit) Tool life: 1.000 strokes Drilling freq.: max. 8 / s

Microvia Ø 0,125 mm Drilling freq.: 150–180 / s

Filling of Microvias or not? That is the question!



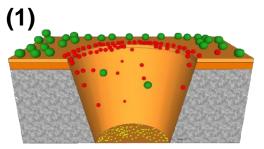




IPC-7095C - Table A-3 - Class III: Max. "22% of the image diameter"

The formation of voids depends, among other things, on:

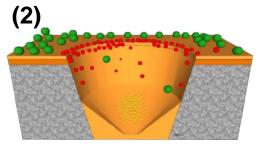
- Flux / solder paste
- Temperature profile of the solder process
- Uniform heating or through-heating of the circuit board

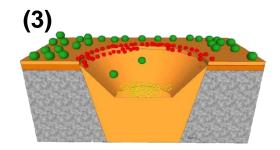
Every user has to define for himself how to manufacture!

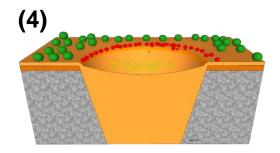





Filling of Microvias or not? That is the question!





#### Sequence Cu-Filling Process (Source/publication: MacDermidEnthone Electronic Solutions / 2018)

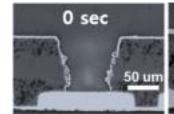




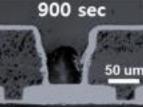

- Leveler
- Brightener

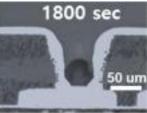






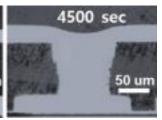

Role: Molecules occupy the surface and block the deposition of Cu


Role: Molecules accumulate at the location of the highest current densitiy and block the deposition of Cu


Role: Brightener for the reduction of Cu crystal sizes

#### Time sequence (Source/publication : KAIST / 2019)

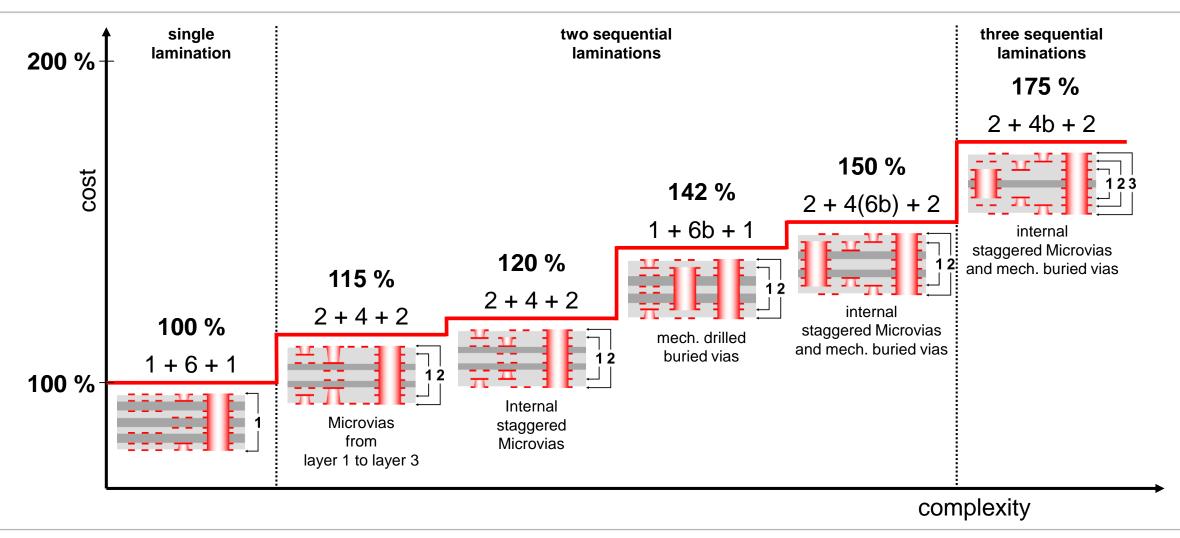



Legend:












Process takes factor 2-3 longer compared to standard

What influence does the HDI layer stackup have?





Which influence do the routing tools have on the PCB costs?





0,6 h

270%

2,8 h

1200%

0,2 h

100%

38.2 mm (1½") Ød

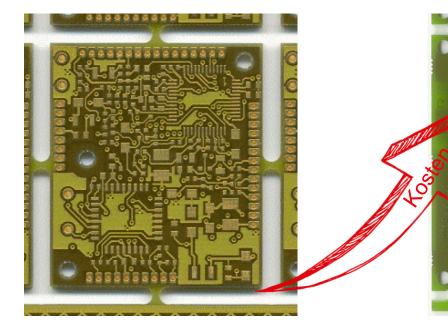
ø3.175 mm (1/8")

Tool life

Feed

Panel stacking

Time to route 100 PCBs with 0,5m routing path


**Price indicator (only routing process)** 

What else has an influence on the price of PCBs?



Routing contour

Complex routing contours can lengthen the routing paths and have a negative influence on the routing tool diameter



#### **Standard routing contour**

- 4x change in direction
- routing tool 2,4 mm

## **Complex routing contour**

- approx. 30x change in direct.
- high routing time
- routing tool 1,8 mm



#### **Agenda**

PCB array

Copper price development and choice of materials

**PCB** stackup

**Mechanical processing** 

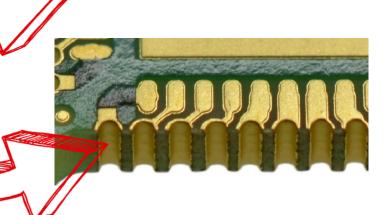
**M** Advanced technologies

More tips & tricks

Summary

What else has an influence on the price of PCBs?




#### **Further cost drivers!**

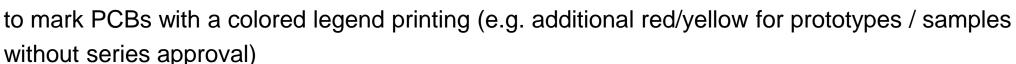
PCB thickness / layer count⇒ not only relevant for drilling & routing....

Number of laminations

Edge plating / side plating

Castellated holes / Castellation




What else has an influence on the price of PCBs?



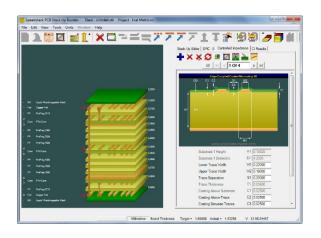
#### **Further cost drivers!**

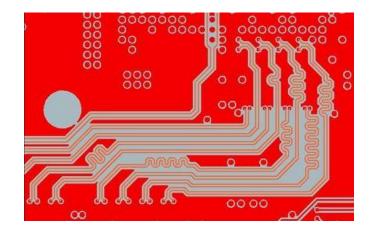
#### **Colored solder resist**

- White / black / red / blue
- The problem: demand extremely low
- Question: Does it always have to be solder resist - or is it sufficient



#### **Legend printing**


How small must be printed? Danger: printing onto pads



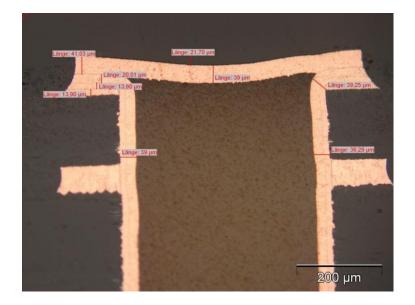

What else has an influence on the price of PCBs?



#### Required or needed impedances

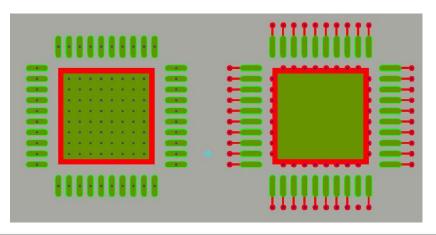





- Impedance watching / controlled dielectric
  - ⇒ Calculated stackup and tracks, no TDR coupons
- Impedance control
  - ⇒ additional TDR coupon (or coupons) on manufacturing panel
  - ⇒ reduced number of PCBS on manufacturing panel



What else has an influence on the price of PCBs?




IPC 4761 – Filled and Capped Via (Type VII Via)
 ⇒ Via filled with resin and plated with Cu



Necessary or to be avoid with intelligent design?





What else has an influence on the price of PCBs?

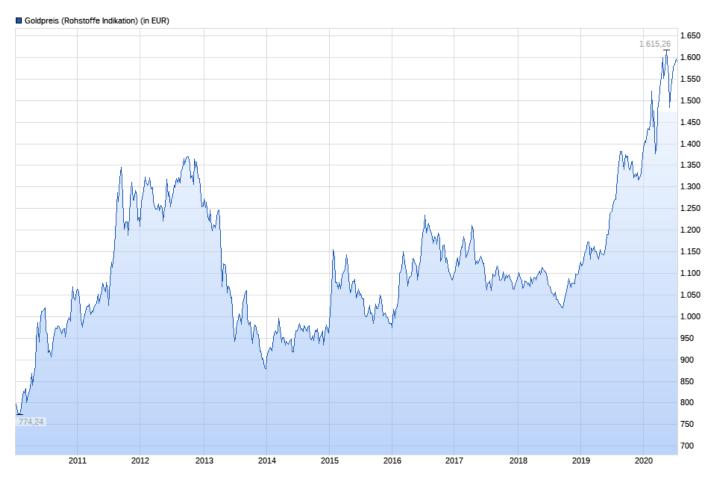


Request: IPC Class 3

The requirement of  $25\mu m$  copper in the barrel is often mistaken with the requirement of IPC Class 3 production:

- 25µm barrel copper is only a part of the requirement of IPC Class 3
- However, the stricter test criteria according to IPC Class 3 lead to a lower yield and, together with the effort to check the criteria, to an increased price!

## What else has an influence on the price of PCBs?

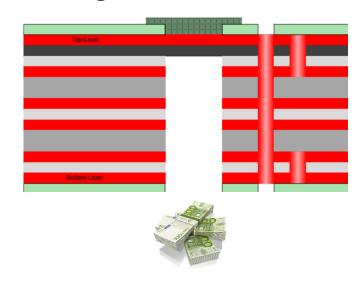



#### Electroplated Gold

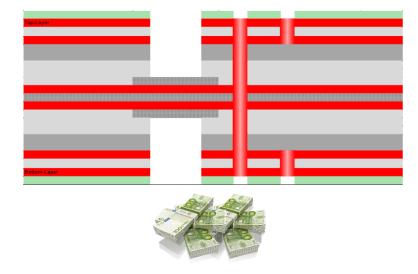
#### **Usage of electroplated Gold**

- often used for contacts as an abrasion resistant surface
- mostly selective in combination with ENIG
- with thicknesses up to 4µm

Price indicator: up to 500% or more (depends on the current price of gold)




Source: http://www.boerse.de – data downloaded on 13.07.2020


Who about flex-rigid stackups?



Flex-rigid 1F-5Ri / HDI 1-4-1



Flex-rigid 2Ri-2F-2Ri / HDI 1-4-1



- Single sided vs. double sided effort for mechanical depth milling
- Huge price differences for the flex material: copper on one or both sides
- Screen-printed flexible solder resist is cheaper than routed and laminated coverlay
- For higher reliability with xRi-2F-xRi: Partial coverlay (Bikini coverlay) required



#### **Agenda**

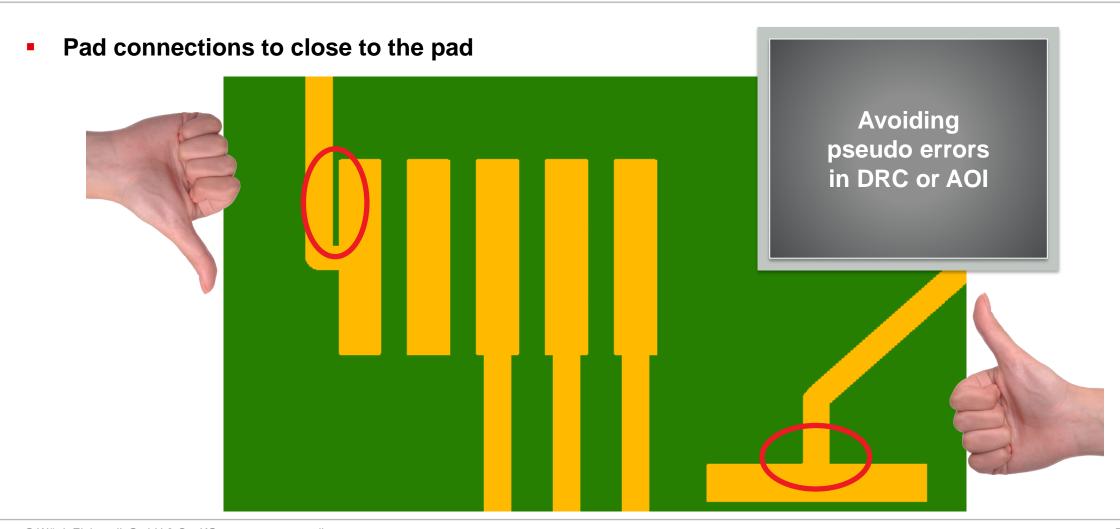
**PCB** array

Copper price development and choice of materials

PCB stackup

**Mechanical processing** 

Advanced technologies

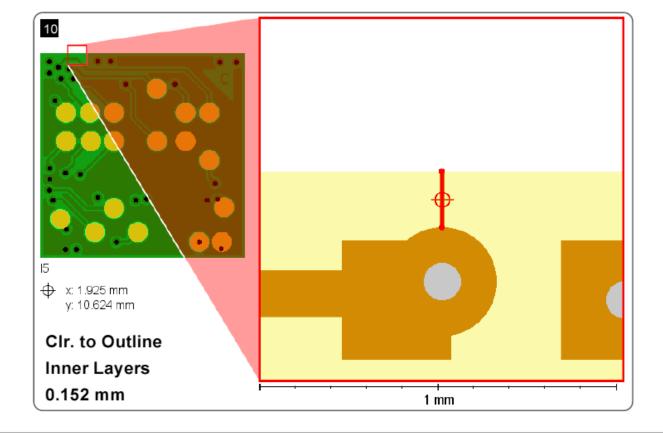

More tips & tricks

**Summary** 

# More tips & tricks

Error prevention






# More tips & tricks

## **Error** prevention



Clearance to outline of planes, lines and holes incl. pads



# More tips & tricks

Data output – Gerber-Format



**RS-274-D Standard Gerber** 

⇒ obsolete, replaced by

**RS-274X Extended Gerber** 

#### **Parameters for output:**

- Often preset parameters are inaccurate in modern layouts:
  - 2.3 Inches ⇒ min. resolution 25,4 µm
  - Better: 2.5 Inches (min. resolution 0,254 μm) or
    - 4.4 metric (min. resolution 0,1 μm)
- No mixing of parameters:
   Drill data and Gerber data should be based on the same parameters due to tolerance chains in conversion of the data (especially for HDI boards)



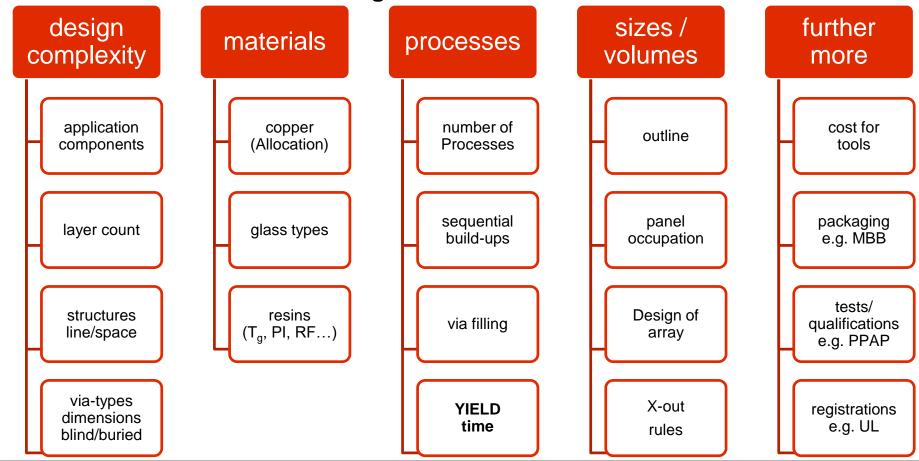
#### **Agenda**

PCB array

Copper price development and choice of materials

PCB stackup

**Mechanical processing** 


**Advanced technologies** 

More tips & tricks

**Summary** 



Things to consider when manufacturing PCBs:



# Thank you very much for your attention!



# What kind of Application do you have?

HOW can WE

support YOU?

Würth Elektronik GmbH & Co. KG
Advanced Solutions Center
+49 7940 946-1234
asc@we-online.de