

## AGENDA

1 The full package of Flex solutions
2 Flexibility or bendability: How do the different options perform?
3 Digital available stackups for your EDA software
4 Project based optimisation
5 Flexibility and costs in relationship


Klaus Schill-Mulack
Project management


## SPECTRUM OF WE FLEX SOLUTIONS IPC Standards

IPC-2223 (D) - Design for flexible and rigid-flexible printed circuit boards

- Dielectric flexible films like polyimide or polyester
- Copper foils like ED or RA copper
- Completely flexible or a combination of rigid and flexible Printed Circuit Board
- Application A: Flex-to-install / static
- Application B: permanent, specified bending load / dynamic
- Bending = tension and compression



## SPECTRUM OF WE FLEX-SOLUTIONS

Typical Stackups

- SEMI.flex / BEND.flex

- RIGID.flex 2F-6Ri

- RIGID.flex 1F-7Ri

- SLIM.flex 6F



## SPECTRUM OF WE FLEX-SOLUTIONS SEMI.flex / BEND.flex

SEMI.flex


- Rigid Material, only Tg 135
- ED-Cu + plated Copper
- Flexible solder mask in the flex area
- Z-axis controlled depth milling tool $45^{\circ}$ Phase
- Milling in the glass/resin matrix
- Copper on outer radius only

BEND.flex


- Rigid material, Tg135-Tg170
- ED-Cu + plated copper
- Coverlay or flexible solder mask in the flex area
- Use of spacer, FR4-cores, Lowflow-Prepreg
- Copper on inner and outer radius possible

Direct comparison:


## SPECTRUM OF WE FLEX-SOLUTIONS RIGID.flex

- Multilayer Stack-up with Polyimide
- Z-axis controlled depth milling
- Use of spacer, FR4-cores, Lowflow-Prepreg
- Rigid Material Tg 130-220
- Polyimide adhesiveless
- Coverlay in Flex area
- RA or ED-Copper
- Stack-up xRi-2F-xRi

- Stack-up 2F-xRi
- Microsection 1Ri-8F-1Ri



## FLEXIBILITY OR BENDABILITY

Definitions


Any PCB material is flexible if it is thin enough

- Stiffness describes the resistance of a body to elastic deformation
- Flexibility describes the ability to adapt to changing circumstances. ability to bend or compress easily
- Bendability describes the forming process. Bending stresses act in the forming zone
- Bending radius describes the radius with which the material can be bent without cracking. The material is bent as closely as possible for $180^{\circ}$. The radius is determined on the inside of the material
- Rolling direction describes the stretching of the copper by rolling. A fiberlike material structure is created. The elongation of the fibres is always in the rolling direction



## FLEXIBILITY OR BENDABILITY

## Static Application



- Keep the bending radii as large as possible
- Build up of flexible layers with polyimide or FR4
- The minimum bending radius should be ten times the thickness of the finished flexible printed circuit board.
- Flex PCBs should preferably be able to follow their natural curve in the bend
- For FR4-Semiflex printed circuit boards, the use of a bending support / preforming can be useful
- FR material $>250 \mu \mathrm{~m}$ and polyimide with $>4 \mathrm{Cu}$ layers in the flex area can be described as more or less stiff
- Guidelines for everyday practice

| Cu layer 35u | D app. $(\mu \mathrm{m})$ | $\mathrm{R}(\mathrm{mm})$ |
| :---: | :---: | :---: |
| Flex 1-layer | 120 | $>1,2$ |
| Flex 2-layer | 200 | $>2$ |
| Flex 4-layer | 300 | $>6$ |
| FR4 1-layer | 200 | $>5$ |
| FR4 2-layer | 300 | $>8$ |

## FLEXIBILITY OR BENDABILITY

## Dynamic Application



- Construction of flexible layers only with polyimide/acrylic adhesive
- The neutral axis should be in the middle of the flex layer. Use identical materials on both sides of the tracks
- Use of RA copper and orientation of the rolling direction parallel to the bending direction
- No plated-through holes in the bending area (plated copper)


## DuPont ${ }^{\text {m" }}$ Pyralux ${ }^{\circ}$ AP

All-Polyimide Double-Sided Copper-Clad Laminate
Flexible Circuit Materials
Property

- Guidelines for everyday practice

| Cu layer 35u | D app. ( $\boldsymbol{\mu m}$ ) | R (mm) |
| :---: | :---: | :---: |
| Flex 1-layer | 120 | $>12$ |
| Flex 2-layer | 200 | $>30$ |
| Flex 4-layer | Not recommended |  |

- Conductor tracks in two-sided printed circuit boards shall not be arranged directly on top of each other



## DIGITAL STACKUPS

- Flex-Rigid, Flex inner layer

- Flex-Rigid, Flex outer layer


EDA Tools:

- Cadence

OrCAD / Allegro

- Altium AD20
- IPC-2581
- further tools in progress
- SLIM.flex

- LINK



## DIGITAL STANDARD STACKUPS

 Start your layout faster

- Avoiding errors
- Increase productivity
- Designing reliability
- Achieving safety



## PROJECT BASED OPTIMISATION

Key factors

- Material in bending area

Polyimide from 25-125 $\mu \mathrm{m}$, $>10$ different coverlay types

- LP thickness in the bending range $>130 \mu \mathrm{~m}$
- Copper type (ED / RA...mashine direction of rolling process)
- Design - conductor routing, grid/hatching
- Array design
- Processing guidelines



## FLEXIBILITY AND COSTS

## An estimation

Overview costs in \% / Bending cycles



## THANK YOU FOR YOUR ATTENTION!

What kind of

## application

 do you have?How can we

> support you?

