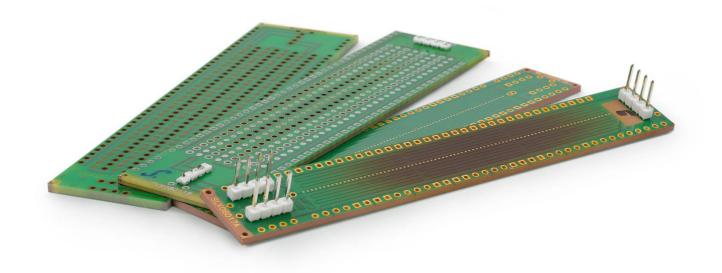


Proof of reliability using Interconnect Stress Test


May 2020 • Page 1

www.we-online.com

Content

- Reliability and product classification according to IPC
- Where are robustness and safety relevant?
- Interconnect Stress Test (IST)
 - Fields of application
 - Customer benefits
 - Procedure and options
 - Example of a test report
- Customer Solution Assessment
 - Objectives and benefits
 - Assessment procedure
- Developing reliability step by step

Reliability

- What consequences can a lack of reliability have on your products?
- Have there been cases where reliability expectations were not met?
 What part did the printed circuit board play in this?
- How do you currently ensure the reliability of your products?
- How do you ensure the reliability of new technologies?

Reliability is the probability that a product will perform its intended function for a specified time interval under specified conditions.

"The reliability of a product is ...also the result of combining knowledge and experience during the design phase."

Short survey no.1

Have you heard about the Interconnect Stress Test? Have you already used it yourself?

Product classification according to IPC

Class 1 General Electronic Products

Includes **limited life** products suitable for applications where the requirement is function of the completed product.

Class 2

Dedicated Service Electronic Products

Includes products where continued performance and extended life is required, and for which **uninterrupted service** is desired but not critical.

Class 3

High Reliability Electronic Products

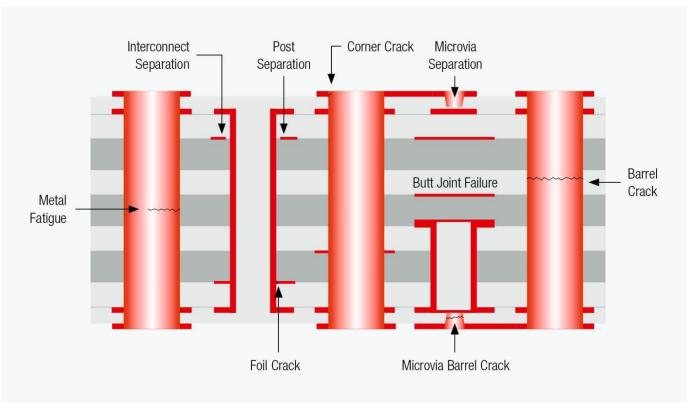
Includes products where **continued high performance** or performance-ondemand is critical, product downtime cannot be tolerated, and the product must function when required.

Source: IPC

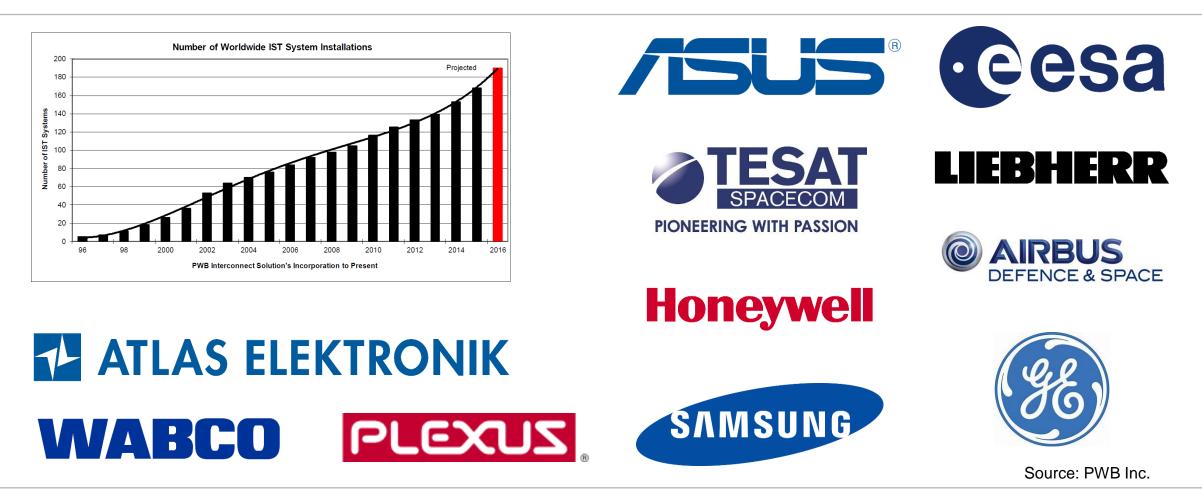
Short survey no.2

• What branch are you from?

Where are robustness and safety critical? Typical applications


- Medical Technology
 - Implants
 - Endoscopes
 - Radiotherapy
- Military
- Aerospace
- Commercial vehicles
- Motorsports
- •••

Fields of application


- Proof of reliability for product qualification
- Securing the introduction of new technologies
- Investigation of design and technology changes
- Process and product troubleshooting (optimization)

Failure due to cycling thermal stress

Experience and references

www.we-online.com

Customer benefits

Fast, time-saving simulation of manufacturing and operating conditions

 Multiple reflow simulation, accelerated life testing Q

Intensive monitoring for the precise detection of weak points

- Permanent recording of the "state of health" of the test coupons
- Time of occurrence of failure precisely identifiable, 100% documented
- Exact localisation of the fault position, precise microsection preparation

Statistical analysis

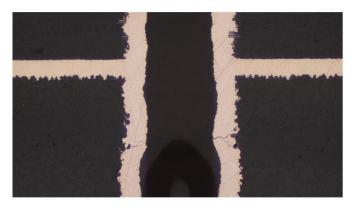
- Lifetime data
- Failure types

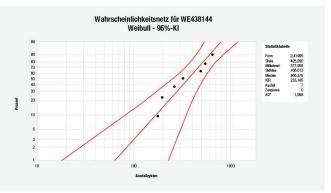

Identification of impact variables and definition of design recommendations

Procedure and options

Coupon design based on your PCB

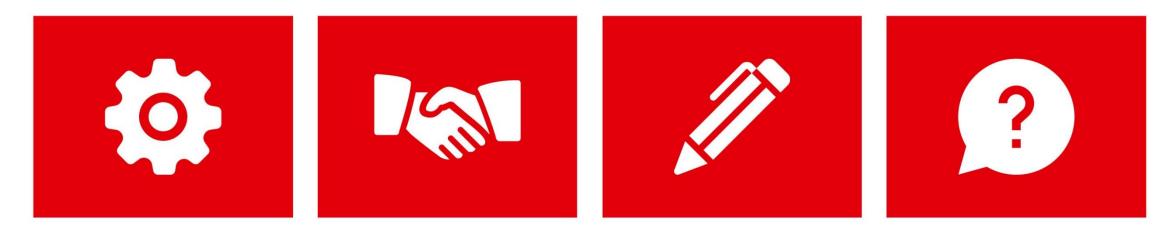
- Material, stack-up and design
- Via types, drill hole diameters and distances
- Solder surface
- Determination of test scope and test parameters in coordination with you
 - Number of IST test cycles
 - Soldering simulation
 - Test temperature
- Test preparation and execution (8 test coupons at the same time)
- IST Test Report
 - Microsection analysis of the faults (first, middle and last failure)
 - Statistical analysis
 - Thermomechanical analysis of the stack-up
 - Design recommendations (optional)


Example test report



- Product documentation
- Description Test coupon
- Test sequence and test parameters
- Measurement data
- Statistical analysis
- Microsection documentation
- Thermomechanical analysis (CTE, Tg)
- Optional: Recommendations for further action
- Summary


Coupon ID	Zyklen Powerkette	Widerstand Änderung [%]	Zyklen Sensekette	Widerstand Änderung [%]		
1	N/A	0,5	300	10	Sensekette	
2	N/A	0,1	250	10	Sensekette	
3	N/A	1,5	233	10	Sensekette	
4	N/A	0,7	162	10	Sensekette	
5	N/A	0,3	232	10	Sensekette	
6	N/A	1,4	274	10	Sensekette	
7	N/A	1,1	235	10	Sensekette	
8	N/A	0.9	318	10	Sensekette	



Customer Solution Assessment

Concept

for project-related, transparent visualization and evaluation of different electronic interconnection systems

An early support

of the customers in the development process of an electronic system

Identification and documentation of project-specific requirements, e.g. reliability requirements **Early clarification** of feasibility, cost trends and testability

Customer Solution Assessment

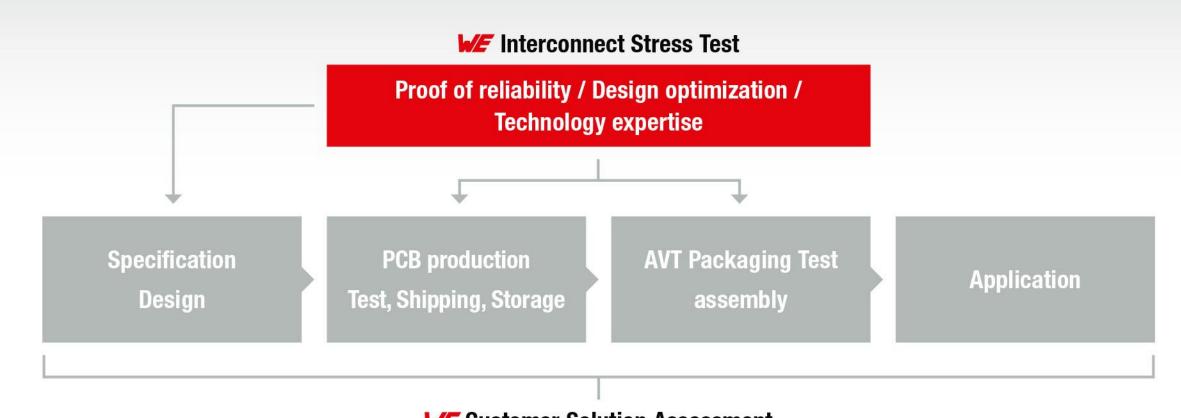
Assessment procedure

Customer Solution Assessment

Assessment procedure

	Decision criteria	Selection options					
Reliability in		Weighting	Homogeneous system		Inhomogeneous system		
пенаынту ш		G	В	G x B	В	GxB	
Harsh Environment Applications	1. Assembly production	5					
	1.1 Design	5	5	25	1	5	
	2. Assembly	<u>40</u>					
	2.1 Complexity	10	5	50	2	20	
	2.2 Reduction of errors during installation	20	6	120	5	100	
	2.3 Service (Removing)	10	5	50	1	10	
Proof of reliability by IST	3. Conditions of use	<u>30</u>					
	3.1 Dynamic bending	5	6	30	6	30	
	3.2 Wiring Reliability	25	6	150	2	50	
	4. Electrical requirements	10				1	
	4.1 Signal integrity	10	6	60	5	50	
	5. Cost of the non populated system	5	5	25	3	15	
	6. Awareness / experience with flex-rigid	<u>10</u>	5	50	5	50	

Short survey no.3



Do you currently see opportunities for using the Interconnect Stress Test?

Developing reliability step by step The life cycle of a PCB

WE Customer Solution Assessment

Thanks for your Attention!

What kind of application do you have?

HOW can WE

support you?

Hotline: flex@we-online.de