

MINIATURIZATION FOR INDUSTRIAL ELECTRONICS, TAKING COST AND RELIABILITY ASPECTS INTO ACCOUNT

Andreas Dreher 28th September 2022

AGENDA

Miniaturization – Rigid PCBs

- Correlations in miniaturization
- 2 Stack-ups, PCB size, Design Rules HDI (High Density Interconnect)
- **3** HDI technologie variants & development of costs
- 4 Reliability Interconnect Stress Test
- 5 Case Study Reliability PCB thickness
- 6 Case Study Reliability Type of interconnect

YOUR SPEAKER

Andreas Dreher

- Technical Project Management
 - General technology
 - Customer consulting
- With Würth Elektronik CBT since 2003

Here's how to reach me:

- Tel.: +49 7622 397-133
- E-Mail: andreas.dreher@we-online.de

CORRELATIONS

MINIATURIZATION

PCB SIZE

PCB size

- Is decisive for the size of the device
- Could be essential for a successful product
- Decisively influences the production costs

Reduction of the required routing area

- ⇒ HDI Technology with microvias + buried vias
- ⇒ Instead of through hole vias

NUMBER OF LAYERS – PCB THICKNESS

Design Study

How many signal layers are needed?

How many signal layers are needed?

DESIGN RULES VIAS – IPC SPECIFICATION

IPC-2221B Design Recommendation – "general requirements for lands with holes"

- Level A: General Design Producibility
 Preferred
- Level B: Moderate Design Producibility
 Standard
- Level C: Least Design Producibility
 Reduced

Minimum via pad size $\approx 0.50mm$

BGA - Pitch < 0.8mm: HDI Microvia

Figure 9-2 External Annular Ring

Figure 9-3 Internal Annular Ring

Table 9-1 Minimum Standard Fabrication Allowance for Interconnection Lands

Level A	Level B	Level C
0.4 mm [0.016 in]	0.25 mm [0.0098 in]	0.2 mm [0.0079 in]

Note 1. For copper weights greater than 1oz/sq. ft., add 50 µm [1,968 µin] minimum to the fabrication allowance for each additional oz/sq. ft. of copper used.

Note 2. For more than 8 layers add 50 µm [1,968 µin].

Note 3. See IPC-2221 for definition of Levels A, B and C.

Note 4. Refer to IPC-2226 for allowances for HDI and micro-BGA substrates.

Note 5. For hole structures spanning multiple laminations, add 0.05 mm [0.002 in].

DESIGN GUIDE – TECHNOLOGY SELECTION

www.we-online.de/microvia

Andreas Dreher | 28.09.2021

DESIGN RULES – EXAMPLE 0.50 MM PITCH BGA

Advantage: large solder pads

Advantage: filling not necessary

Via in Pad Var.3

Advantage: one more routing layer

Design Rules	Var. 1	Var. 2	Var. 3
BGA solder pad	300 - 330 µm	240 / 250 µm	275 µm
Solder mask clearance	50 µm	40 µm	35 µm
Microvia pad outer layer	≥ 300 µm	275 µm	275 µm
Microvia pad inner layer	275 µm	275 µm	275 µm
Track width / spacing outer layer	≥ 100 µm	80 - 90 µm	75 µm
Track width / spacing inner layer	75 µm	75 µm	75 µm

- 75 µm fine line structures
 + copper thickness
 approx. 25 µm max.
- Cu Filling for microvias optional (with via in pad / var.1 and 3)

TECHNOLOGY SELECTION – STACK-UP

CORRELATIONS

RELIABILITY - INTRODUCTION

What does Reliability means for PCB ?

- Ensuring the electrical functions during the entire intended service life.
- Even flawless circuit boards fail at some point if they are exposed to temperature fluctuations.

RELIABILITY

Via Structures

Parameters with the most influence to the reliability for plated through holes

- Coefficient of thermal expansion (CTE_Z) of the used materials
 - Diffenrent CTE_Z values
 - Overall thickness of the PCB!
- Cross sectional area of the thorugh hole
 - Drill diameter of the hole
 - Copper thickness inside the hole Be aware: not allways is a higher thickness better for reliability
- Conditions in the end application

RELIABILITY

Coefficient of thermal expansion

RELIABILITY – PCB THICKNESS

 The influence of the printed circuit board thickness is enormous :

With only ~ 20 % reduction of the thickness the reliability can increase up to 3x times!

RELIABILITY PCB thickness

INTERCONNECT STRESS TEST (IST)

Procedure and options

- Coupon design based on your PCB
 - Material, stack-up and design
 - Via types, drill hole diameters and distances
 - Solder surface
- Determination of test scope and test parameters in coordination with you
 - Number of IST test cycles
 - Soldering simulation
 - Test temperature
- Test preparation and execution
 (8 test coupons at the same time)
- IST Test Report
 - Microsection analysis of the faults (first, middle and last failure)
 - Statistical analysis
 - Thermomechanical analysis of the stack-up
 - Design recommendations (optional)

RELIABILITY - VIA TYPES

Investigation of plated through hole structures at different test temperatures

RELIABILITY - VIA TYPES – IST MICROVIAS

Investigation of microvia structures at different test temperatures

RELIABILITY – STACKED VIAS

Design Standard for HDI Printed Boards **IPC-2226A** IPC-2226a-5-04

Figure 5-4 Type III HDI Construction with Stacked Microvias

(Caution: Unbalanced constructions as shown above may result in excessive bow and twist.)

Note 1: Stacking not recommended for resin or conductive/non-conductive filled microvias.

Note 2: Stacking not recommended over resin or conductive/non-conductive filled vias due to potential for reduced reliability. The use of staggered structures

Caution: HDI design with microvias stacked on buried vias is not recommended.

Recommendation by ZVEI Working Group Quality and Würth Elektronik

Existing designs should also be changed as soon as possible!

WE will support you in this!

RELIABILITY – STACKED VIAS

Recommendation by ZVEI Working Group Quality and Würth Elektronik

Existing designs should also be changed as soon as possible! WE will support you in this!

CORRELATIONS

MANY THANKS FOR YOUR ATTENTION!

What kind of application do you have?

How can WE Support you?

QUESTIONS?