

Webinar High Performance PCB System

Miniaturisation – HDI – Thermal Management – Printed Polymer

www.we-online.de Webinar

page 1

Highly reliable printed circuit boards and devices in automotive electronics

- 1. Miniaturisation
 - HDI Technology
 - Reliability IST

2. EmbR – printed embedded resistors

- Performance Tolerances
- Reliability

3. Thermal Management

- Thermal vias
- Heat Sink
- Thermal Simulation

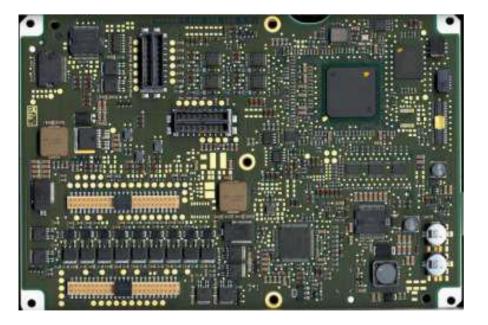
Stefan Keller Product Manager

4. Costs

• FR4 instead of Ceramic

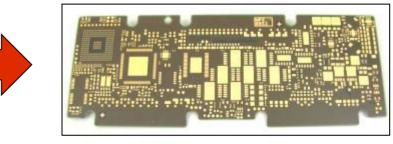
High Performance PCB System Market Requirements

Customer's objectives:


- PCB size and respectively the size of the unit needs to be reduced to one 1/4 in comparison to the currently running previous version
- Usage of complex and "small" components
- High operating temperature (- 40 bis +140° C ambient temperature)
- Unchanged high long-term reliability, at least 10 years, 20.000 h (commercial vehicle application)
- Harsh environmental requirements e.g. vibration, mechanical shocks
- Cost effective competitive

Requirements for PCB manufacturer:

- Competent team: technology, process development, quality management
- Project management
- Test equipment
- Investment confidence

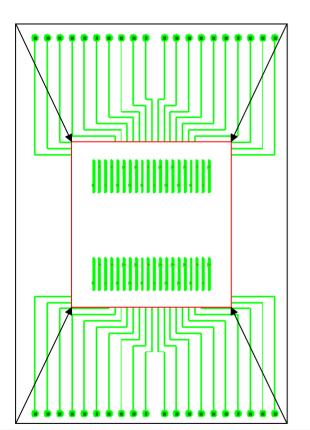

Miniaturisation

New PCB size: 1/4

1. Approach (temporary): LTCC – ceramic solution > works, but target only partially achieved – relatively expensive

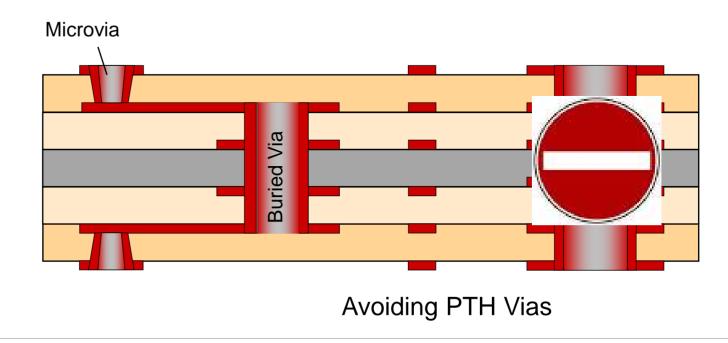
2. Approach: High Performance organic (FR4) - PCB System

50 x 140 mm

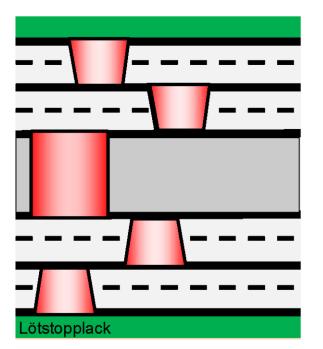

Combination of HDI- and Printed Polymer Technology in connection with optimized thermal management

> Target achieved, production start at the beginning of 2015

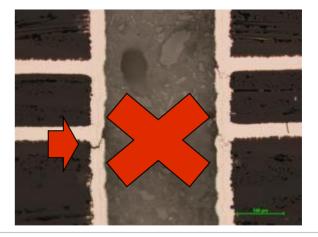
High Performance PCB System Miniaturisation using HDI Technology



PCB size / unit size > Could be essential for the success of a product!


Long-standing recommendation of WE HDI Product Management:

- Reduction of the rooting area by using microvias + buried vias instead of plated through hole vias
 - > perfectly implemented in the applicaton shown !

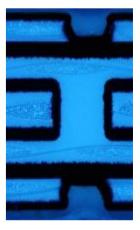

Miniaturisation by HDI Technologie

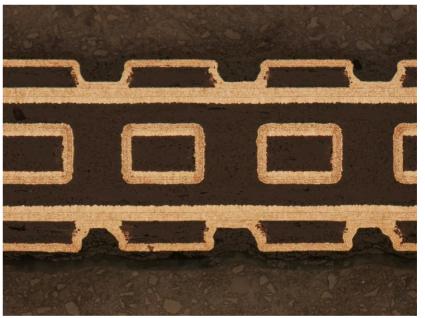
Layer stack-up HDI06_2+2b+2

- High packaging density by using Microvias + buried vias, without plated through (PTH) Vias
- > 2nd Microvia layer
- Highest reliability caused by low PCB thickness < 1.0 mm (= low Z-axis expansion)</p>
- Base material Low CTE TG 170°, filled, halogen free

PTH vias are normally the weak points of a PCB concerning thermal cycle stability.

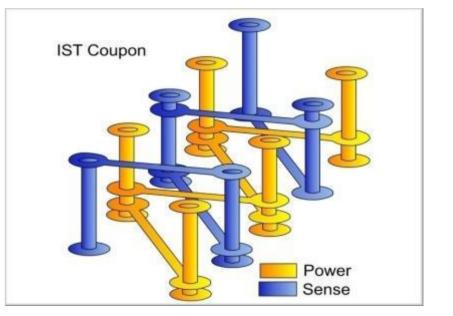
High Performance PCB System Reliability - PCB

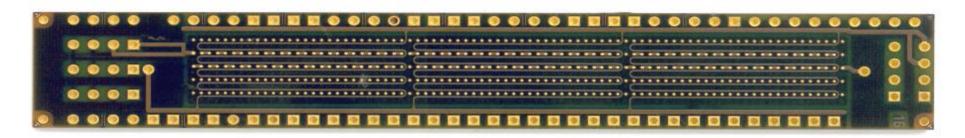

Results of investigations:


- Thermal cycle tests -40° / +155° C (PCB + test coupons)
- IST
- Results: each 1000 cycles passed without any problems

Further tests were carried out on the complete system.

Investigations by customer on the unit as well.


High Performance PCB System Reliability - PCB



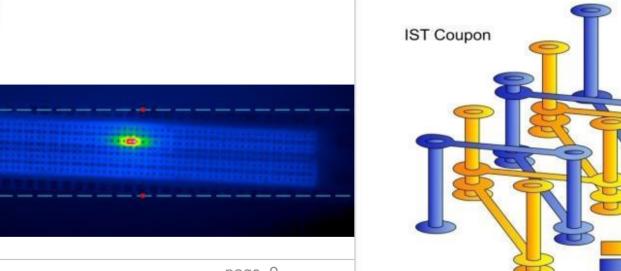
Interconnect Stress Test - IST

The IST offers some decisive advantages to the conventional thermal cycle tests:

- 1000 Temperature cycles in 4 days
- Online measurement of the measuring circuit
- IST = very meaningful test
- Special test coupon matched to the PCB design

Power Sense

High Performance PCB System



Preparation: 6 x Reflow 245° C

or 2 x 260° C Reflow-Simulation in IST

or in accordance to customer specification

- Electrical heating of coupons through powercircuit to 150°C within 3 minutes, cooling to room temperature within 2 minutes
- Online measurement of temperature and resistance (+ 10 % max. resistance change permitted)

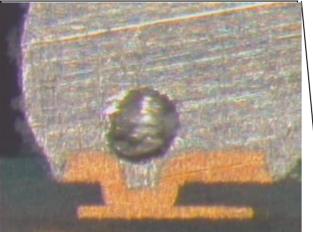
High Performance PCB System Reliability - IST

Measurement results HDI build-up (without PTH vias)

TEST RESULTS

Coupon ID	Pwr Cy- cles	Pwr %	SenseA Cycles	SnsA %	SenseB Cycles	SnsB %	Results
5209_10	1000	0	1000	0.1	1000	0.2	Accept
5209_11	1000	-0.3	1000	-0.2	1000	-0.1	Accept
5209_14	1000	0.6	1000	0.6	1000	0.5	Accept
5209_2	1000	-0.1	1000	-0.1	1000	0.1	Accept
5209_5	1000	-0.2	1000	-0.2	1000	-0.3	Accept
5209_8	1000	-0.5	1000	-0.5	1000	-0.4	Accept
5209_9	1000	-0.3	1000	-0.2	1000	-0.3	Accept
							CusSpec
Mean							N/A
Std Dev							
Min							N/A
Max							
Range							
Coef Var							N/A

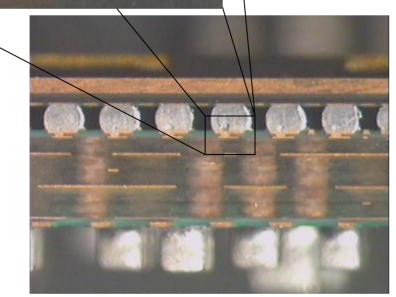
Reliable produced Microvias have a high thermal cycle stability of significantly more than 1000 IST cycles

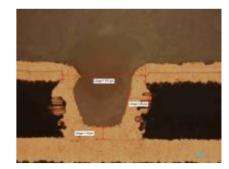

 $(\triangleq 3000 \text{ conventional})$ thermal cycles)

TEST PROTOCOL: 334

-----PASS------PASS------

High Performance PCB System Reliability – Solder Process

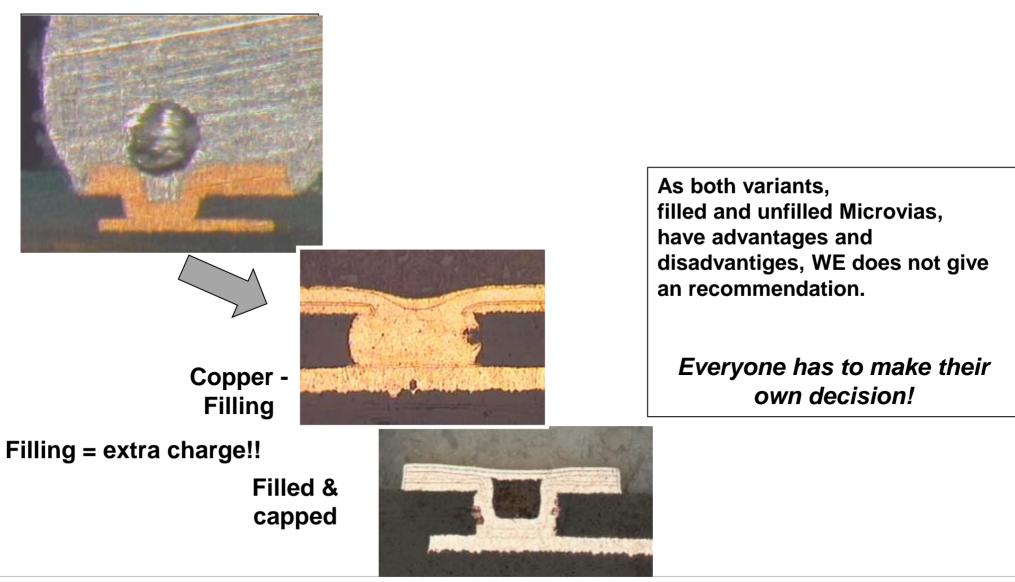



IPC-7095C: "max. 22% of the image diameter"

The appearance of voids depends on:

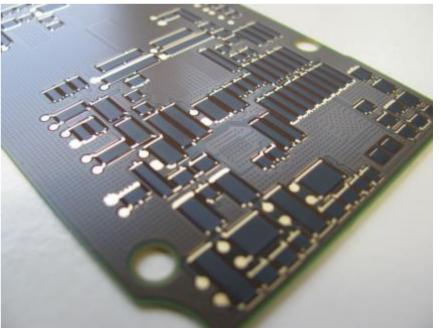
- Flux, solder paste
- Temperature profil

. . . .



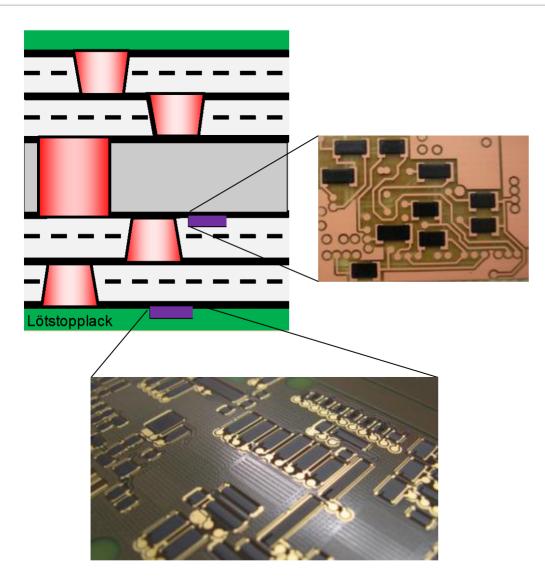
µViP technology is being used by
WABCO in HDI products for over
10 years with 0 ppm

High Performance PCB System Reliability – Solder Process / Microvia Filling

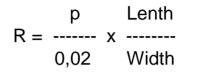

Printed Resistors – Printed Polymer in general

Applications:

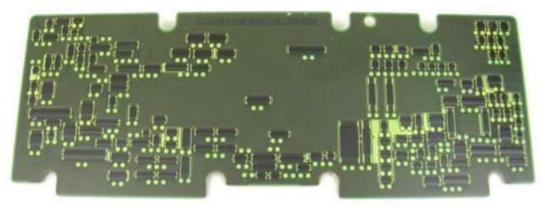
- Pull-up and Pull-down resistors
- Voltage dividers
- General circuit resistors
- High reliability requirements


Facts:

- Pastes with different resistance values
- Tolerance printing process R +/- 30 % (standard)
- Tolerance after laser trimming +/- 5 % for the entire product lifetime
- Resistor values from 50Ω to 1 M Ω (standard)
- Standard size min. 1,75 mm x 1,25 mm
- Thickness of printed resistors approx. 20 µm
- Design Rules available

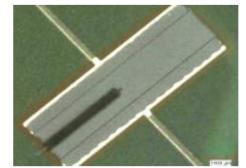


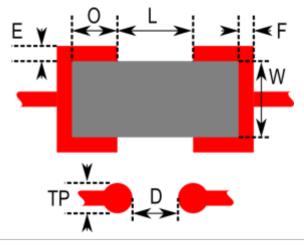
Printed Resistors – Printed Polymer


WE: 10 years experience with printed resistors and with polymer pastes (carbon)

- Miniaturisation using embedded resistors EmbR
- Reliability advantages

High Performance PCB Systems Printed Resistors – Laser Trimming

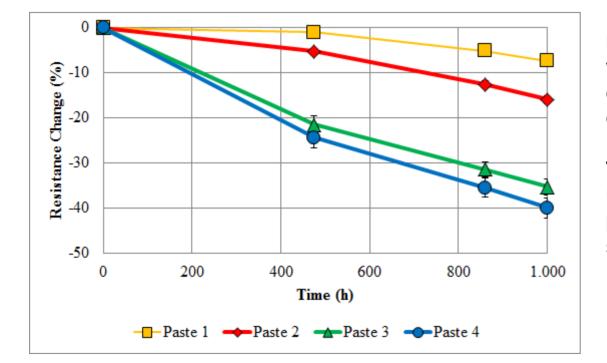




Tolerance of resistance value without laser trimming max. +/- 30%

With Laser Trimming Process tolerance: down to +/- 1%

Entire product lifetime: +/- 5%

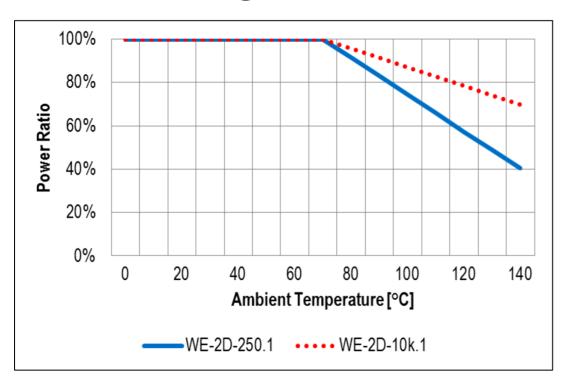


Traceability:

The laser trimming process can also enable perfect traceability by using binary coding on additionally designed resistors.

High Performance PCB System Printed Resistors – Choice of Pastes

1. Step: extensive investigations were necessary, in order to dertermine which pasts could fulfil the demanding requirements of the complete system.


The stability of the resistance values under temperature influence was a particular challenge for many paste systems.

Resistance change: 4 pastes @ 155° C operated with max. power

High Performance PCB System Printed Resistors – Tests

• Power Derating

Aim of Power–Derating tests is to Paste Rated Power at 70°C (mW/mm²) WE-2D-250.1 179 of the r WE-2D-10k.1 100 age the resistor. Currant is constant.

Result: even at 140° C the power dissipation is far above the disired 50 mW/mm².

The performance of the printed resistors is at least as good as comparable soldered resistors or other embedded technologies.

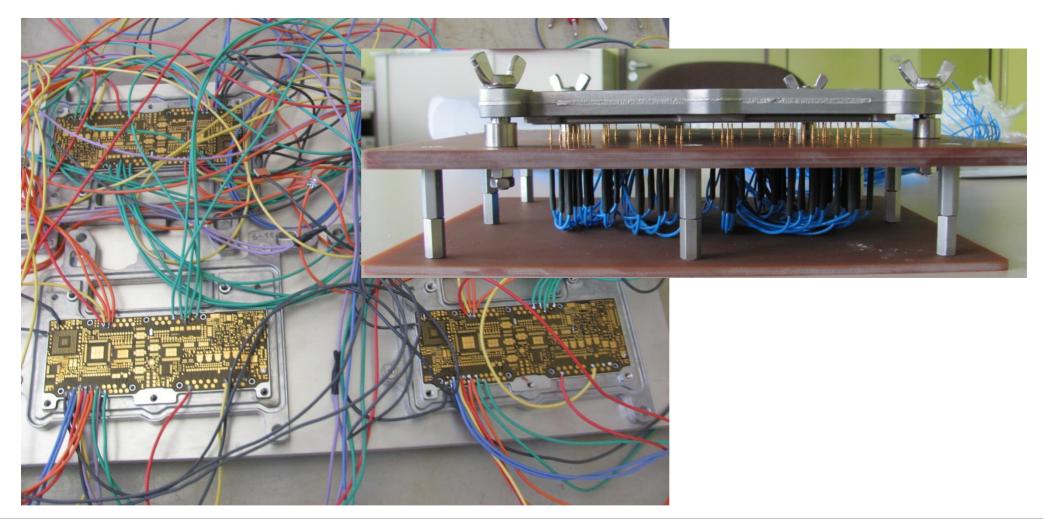
Thermal Cycle Test (conventional)

-40° C / + 155° C, **1000 cycles**, transfer time max. 20 s, dwell time 15 Min., resistance change max. 2 %

Printed Resistors – Tests

Qualification of the System Resistors and Voltage Dividers

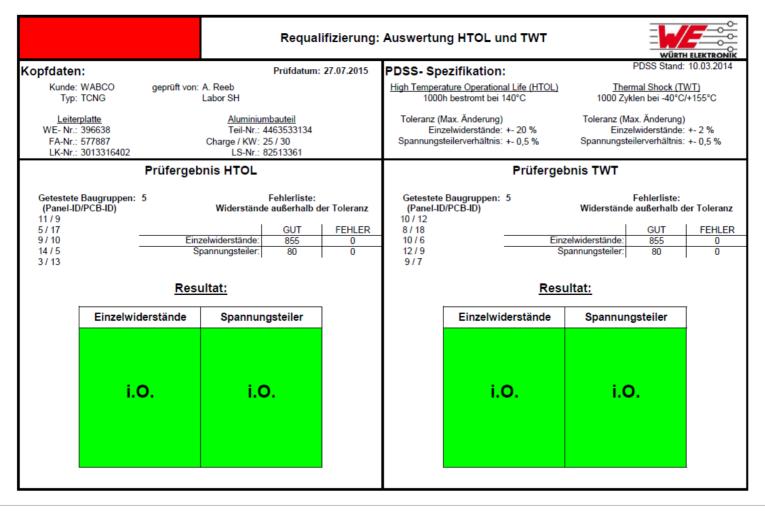
Test	Test method	Procedure	Max. Deviation Single Resistor
Temperature Coefficient of Resistance (TCR)	DIN EN 60115-1:2012-04, 4.8	+20 / -40°C+20°C / +140°C	- 700– 300 ppm/K
High Temperature Exposure (HTE)	MIL-STD-202 Method 108	1000 h @ T _A = 150° C unpowered	+/- 3%
Moisture Resistance	MIL-STD-202 Method 106	25°/65°, 95% rH, 3 cycles in 24h, 10 days, unpowered	+/- 2%
Biased Humidity	MIL-STD-202 Method 103	1000 h, 85°C, 85% rH, 10 % of operating power (50 mW/mm²)	+/- 3%
High Temperatur Operating Life (HTOL)	MIL-STD-202 Method 108	1000h HTE, then 1000 h HTOL @ T_A = 140° C at rated power	+/- 20%
Resistance to Soldering Heat	IPC-TM650	5 times 260 +/- 5 ° C, 10 +/- 1 s	+/- 2 %


extract of the qualification programm

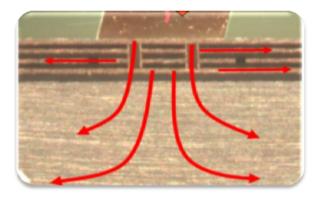
The same tests have been done by customer on the assembled units.

High Performance PCB System Printed Resistors – Tests

Qualification of the System: Preparation HTOL


www.we-online.de Webinar

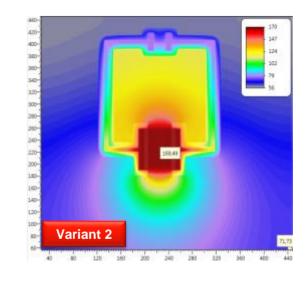
page 20

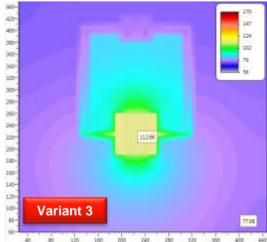

Printed Resistors – Tests

Annual Re-Qualificatin of the System Resistors and Voltage Dividers

High Performance PCB System Thermal Management – in general

Options on PCB basis:

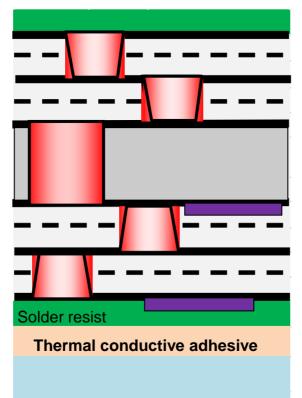

- Heat dissipation using vias
- Heat spreading using planes and heatsinks glued onto the PCBs


Target:

- Lowering of temperature at the component
- Avoiding critical temperatures inside of the component and unit
- Extention of lifetime and ensure of long term reliability of the unit

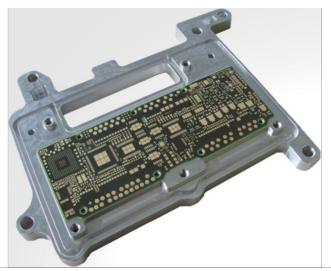
At threshold a thermal simulation in preliminary stages is recommended

Thermal Simulation



Thermal Management – PCB System

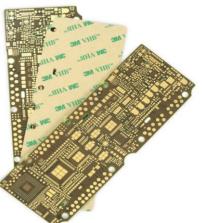
Requirements on the system:


- Operating temperature 140° C, for short time 150°C
- ALU cooling element with high surface finish quality
 - Thick wire bondable
 - Sufficient adhesive strength in connection with thermal conductive adhesive
 - New logistical challenge for the PCB manufacturer

Cooling element

Optimized Thermal Management

- High number of Microvias (direcly in solder pads) and buried vias
 - Large cross section
 - Low thermal resistance
- Thin thermal conductive adhesive 50 µm
- EmbR very close to heat sink (cooling element)

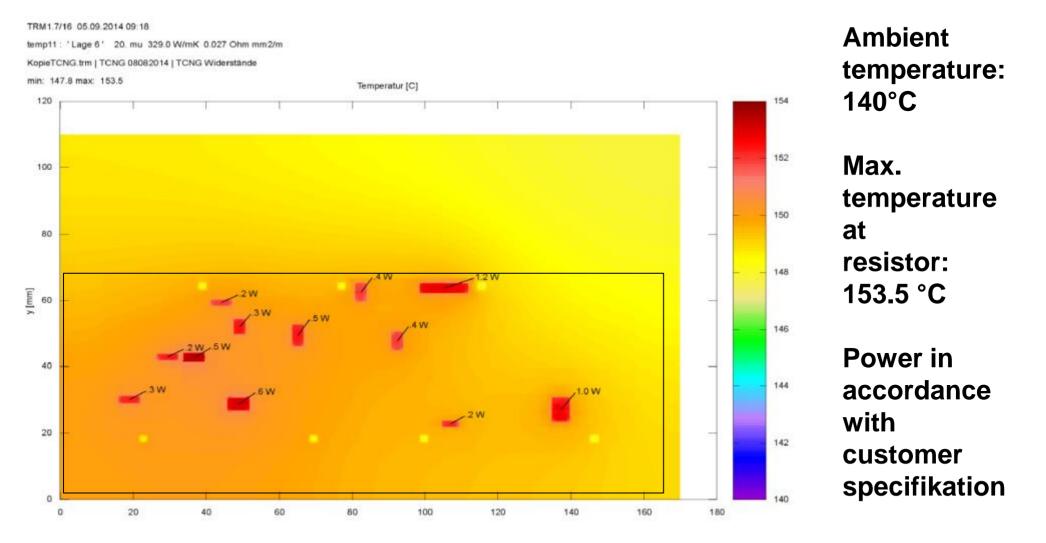

High Performance PCB System Thermal Management – Adhesive strength

Verification of ahesive strength of PCB on cooling element

Target: approx. 0.60 N/mm²

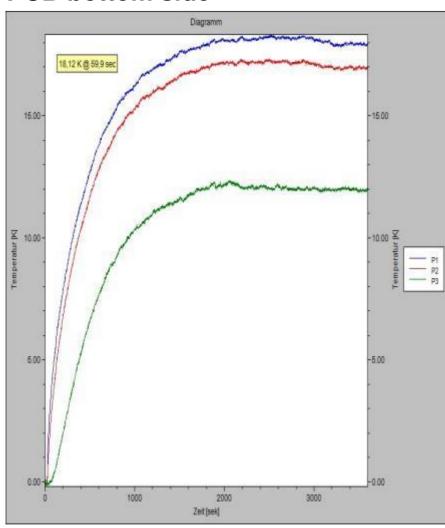
Pretreatment

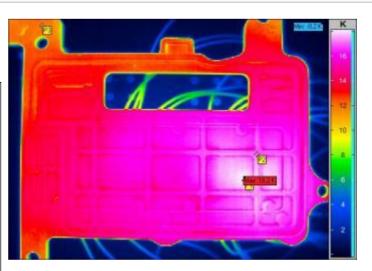
- Thermal cycles (-40°C / +155°C) 1000 cycles
- Climate chamber 1000 h (85°C / 85% air humidity)
- Hich temperature exposure (HTE Test) 1000 h in oven / 155°C


Result:

Necessary to ensure required adhesion strength:

- Lamination considering defined pressure, temperature and time parameters
- Surface tension ALU min. 38 mN/m




Thermal Simulation - Würth Elektronik CBT Product Management

Thermal Management – Thermography Measurement

PCB bottom side

The thermography measurements essentially confirm the results of the simulation.

As these measurements are very complex, only a limited number of resistors could be investigated.

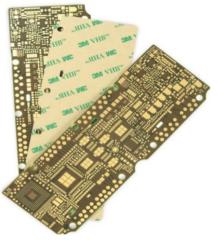
Ambient temperature 140° C Resistors powered with 5-30 V (HTOL Test) Measurement after 60 minutes

High Performance PCB System Thermal Management – Thermography Measurement

PCB Top side

The thermography measurements show that critical hot spots, caused by powered resistors, are avoided, also on the PCB Top side.

Ambient temperature 140° C Resistors powered with 5-30 V (HTOL Test) Measurement after 60 minutes



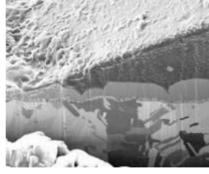
High temperature resistance

- Highest packaging density
- Cost-efficient

FR4

High Performance PCB System Costs – PCB in general

• Main advantage FR4 PCB: manufactured in "large" production panels


PCB Cost drivers

		Presented System	
PCB size	+	Relatively small size	
Unfavourable delivery panel / X-Out		Single PCB	
Complex build-up	*	Two lamination processes	
Material costs	++	Only one core, four pre-pregs, TG170	
Mech. drilled vias	++	Only buried vias in a thin core	
Number of plating steps		Only three "simple" plating processes	
Complex contour machining		Simple milling contour	

Requirements on PCB Manufacturer

- Metallurgic analysis
- Inspection according to IPC-6012 Class 3
- Stereo/optical microscopy (VIS/UV)
- IR camera
- Ionograph
- CAF Measurement equipment
- Climate test chamber
- Thermal Cycle Test
- IST
- High Current Impulse Test
- Pressure Cooker Test
- X-Ray fluorescense spectroscopy
- Thermal simulation
- Testequipment for
 - HTOL
 - Power Derating

Labview - controlled

- Collaboration with institus
 - REM/EDX (Uni Basel, EMPA Zürich)
 - FIB (Uni Basel, EMPA Zürich)
 - XPS (IGB Stuttgart)
 - Wetting tests (ISIT Itzehoe)
 - Ultrasonic microscopy (ISIT Itzehoe)

High Performance PCB System Summary

- HDI Technology
- Printed resistors (Printed Polymer)
- Highest reliability using a thin HDI build-up without PTH vias
- A technology combination of
 - HDI
 - Printed resistors
 - Optimized Thermal Management

can enable a cost effective substitution of a ceramis solution by a FR4 - PCB

• A competent and broadly based PCB manufacturer can realize such a task. System solutions will be an essential part of collaboration in the future. Produkte Systeme Dienstleistungen

Knowing the relationships - is a secret of success!

more than you expect

We are looking forward to good cooperation!

Stefan Keller Product Manager

stefan.keller@we-online.de