

Flex-rigid Design – thorough checkup (Part II)

- Case 1: Interface Adapter
- Case 2: Insulation Foil
- Case 3: µBGA 0.5mm and Flex-Rigid

- Case 1: Interface Adapter
- Case 2: Insulation Foil
- Case 3: µBGA 0.5mm and Flex-Rigid

Interface Adapter | Initial Situation and Challenge

Simple cable harness replacement

- THT to ZIF connector
 - Flex 1 layer, stiffener for ZIF contact

Issues:

- 1. Cost: Manual bonding of the stiffener for ZIF- contact at the end of PCB production
- 2. Quality: Packaging is difficult for everyone (bulk goods!)
- 3. Cost: Manual handling, manual assembly and manual soldering of one plug-in connector by customer
- 4. Quality: Flex cracks at connector pin after some bendings!
- 5. Quality: The mechanical design is not suitable for plastics respectively flex foils (notch effect)

Interface Adapter | Solution

Fundamentally changed approach:

Flex-Rigid 1F-1Ri

- **ZIF** contact by precise depth milling
- Perfect stability and perfect soldering with Plated Through Holes (PTH)
- **Production and packaging in an array**
- Thus automated assembly and soldering possible
- Less notch effect by improved shape
- Lower price compared to pure Flex with stiffener!

Interface Adapter | Options

Flex-Rigid 1F-xRi

- Laser cutting of the ZIF contact is today's standard at WE
- Snap-in hooks as protection against loss of contact (shock, vibration)
- Special design for improved handling
- Opportunity for mounting termination resistors or capacitors very near to the connector and wiring on the second layer of the rigid part
- SMT connector instead of THT enables automated assembly

- Case 1: Interface Adapter
- Case 2: Insulation Foil
- Case 3: µBGA 0.5mm and Flex-Rigid

Insulation Foil | Initial Situation and Challenge

Engine Control Unit

- PCB fixed with screws on a ripped heatsink housing
- Requirements:
 - Very good insulation with low thermal resistance at the same time
 - Also secure tenting of vias
 - High abrasion resistance to withstand shock and vibration without damage

- Coverlay foil is common in Flex-Rigid
- Transferring the idea of Coverlay from flexible to rigid areas
 - Polyimide 25µm thick as a standard,
 option with 50µm thickness
 - Dielectric strength: ≥ 6KV/mil
 - Possible on metal and on soldermask
 - Cutting, registration, fixing on the finished PCB (final process)
 - Vacuum lamination:
 Bubble-free, strong bonding

Examples with rigid-flex – GND contacts and some components free

More examples

- Very sensitive design
- no soldermask under coverlay
- Many areas isolated from the chassis

More examples

- Insulation from the chassis
- Tenting of Edge plating or Half plated holes

Call for more Examples | Success Stories

You apply flex-rigid designs or have just started ? Maybe you are facing a number of challenges to tackle? Either in terms of:

- Material and layer structure
- Design and space requirements
- Delivery panel and processing
- Module interfaces
- Performance in the application
- Cost reasons

We will be glad to assist!

Also we are sure that you have already mastered similar or even greater challenges!

- Would you like to share these successes with us?
- Which of your application could be of general interest and are we allowed to present this at a webinar?

Please give us a hint now in the question window, we will then contact you.

- Case 1: Interface Adapter
- Case 2: Insulation Foil
- Case 3: µBGA 0.5mm and Flex-Rigid

µBGA Pitch 0,5mm | Initial Situation and Challenge

Customer inquiry: µBGA full array 13x13 on a high complexity Flex-Rigid

- Approach 4Ri-2F-4Ri + HDI 3+4b+3
 - Idea of stacked microvias
 - Requires 2x copper filling:
 Limits the smallest clearances on L2/L3 and L8/L9
 - Buried via with offset to microvias
- Design set:
 - Microvia Pad 275µm
 - Microvia-in-µBGA-Pad on TOP layer
 - line / space: 75µm / 75µm
 - controlled impedance not required

µBGA Pitch 0,5mm (13x13) | Solution

Solution proposed by WE TP and negotiated with the customer:

■ Flex-Rigid 4Ri-2F-4Ri + HDI 3+4b+3 ✓

- Microvias staggered, not stacked
- No copper filling required: Larger smallest clearances possible
- Buried via with offset to microvias \checkmark
- Design set for µBGA area only:
 - Microvia Pad 250µm ↓
 - µBGA-Pad 240µm ↓
 - Soldermask clearance 50µm
 - Microvia-in-pad
 - line / space: 70μm / 90μm (layers with plating!)

µBGA Pitch 0,5mm (13x13) | Solution

µBGA Pitch 0,5mm (13x13) | Solution

Thank you very much for your attention!

What Applications do you have?

Where we can support you?

07.06.2019 Seite 20