

ADDITIVE SERIES PROCESS FOR FLEXIBLE SOLDER RESIST - OUR NEW STANDARD

Webinar 09.11.2021

Markus Kennert Jürgen Wolf

AGENDA

- 2 Flexible solder resist in additive technology
 - Process flow and procedures
 - Technology comparison
 - Presentation of the equipment and flexible inkjet solder resist
- 3 Summary

AGENDA

1 Flexible solder resist in the conventional process

- 2 Flexible solder resist in additive technology
 - Process flow and procedures
 - Technology comparison
 - Presentation of the equipment and flexible inkjet solder resist
- Summary

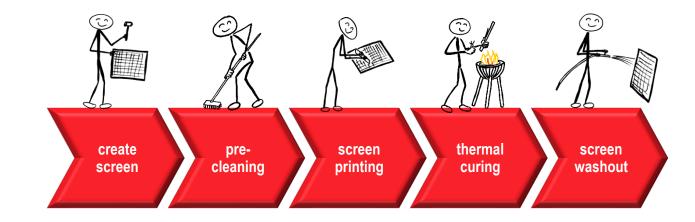
FLEXIBLE SOLDER RESIST

What does "flexible solder resist" mean?

Common industry terms:

Flexible lacquer, flexible solder mask or flexible solder resist

Flexible solder resist serves different purposes on a printed circuit board for electronic circuits:

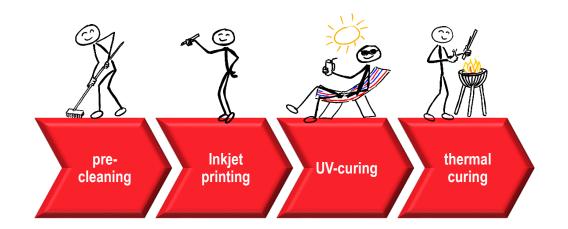

- Protection of copper structures in bendable areas of
 - flex-rigid with external flex
 - semiflex (thinned FR4 for simple flex-to-install applications without polyimide)
- Flex-to-Install multiple bending capability
- Small bending radii
- Defined transition rigid to flexible solder resist
- Replacement of expensive polyimide coverlay, which is partially applied

FLEXIBLE SOLDER RESIST

The "conventional" process flow

Screen printing of flexible resists:

AGENDA


2 Flexible solder resist in additive technology

- Process flow and procedures
- Technology comparison
- Presentation of the equipment and flexible inkjet solder resist
- Summary

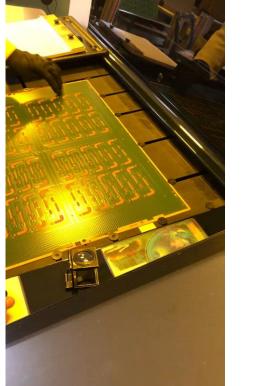
Process flow

Flexible solder resist in additive technology:

How to print? Schematic Illustration

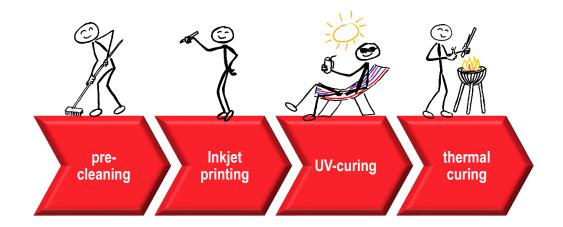
Basic procedure:

- 1st printing step: Covering of the edges
- 2nd printing step: Filling of the flex area

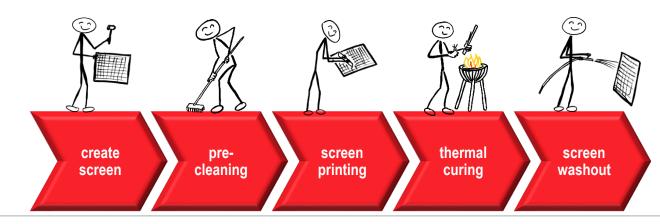

FLEXIBLE SOLDER RESIST IN ADDITIVE TECHNOLOGY How to print?

How to print? Real time process

Printing of flexible solder resist using additive technology in production



FLEXIBLE SOLDER RESIST


Comparison of process flows

Flexible solder resist in additive technology:

For comparison, once again, the application by screen printing:

Implementation in the Niedernhall flex-rigid plant

Presentation of the equipment and flexible inkjet solder resist

MicroCraft CPQ7861 MicroCraft MPJ101-FG20 UV & thermal curable inkjet solder resist

more than you expect

WÜRTH ELEK

FLEXIBLE SOLDER RESIST IN ADDITIVE TECHNOLOGY

Presentation of the machine and the inkjet printable resist

Presentation of the equipment and flexible inkjet solder resist

Welcome,

Takayuki Hidehira

Executive Vice President – MicroCraft

and

Hans Fritz

General Manager – SAT Electronic GmbH

MicroCraft

more than you expect

FLEXIBLE SOLDER RESIST IN ADDITIVE TECHNOLOGY

MicroCraft CPQ7861

Presentation of the machine and the inkjet printable resist

Presentation of the machine

- 4 parallel printheads for high throughput
- Automatic high-pressure "Air Purge System", prevents clogging of the nozzles
- Selectable resolutions up to 2160 dpi
- Serialization and Barcode is possible
- Table with edge clamps and vacuum suction
- Loader and Unloader available (CPA)

more than you expect

FLEXIBLE SOLDER RESIST IN ADDITIVE TECHNOLOGY

Presentation of the machine and the inkjet printable resist

MicroCraft MPJ101-FG20

- Designed for the use in CraftPix series printers
- Designed to work with printers with piezo-electric printheads
- Specially developed for direct-to PCB
- Requires chemical or physical pretreatment
- Applications include:
 - Flexible PCBs (Polyimid)
 - Flex-rigid PCBs
 - Metal or plastic substrates
- Certified UL 94 V-0

Presentation of the machine and the inkjet printable resist

Presentation flexible solder resist

MicroCraft MPJ101-FG20 – Extract from the TDS

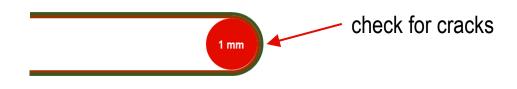
ltem	Test method	Test standard	Test Result
Pencil Hardness	On Copper	IPC-SM-840C 3.5.1 IPC TM650 2.4.27.2 (ASTM D3363)	3H Pass (Above 3H)
(Lead-free) Solder Heat Resistance	Solder float test ; Rosin Flux	IPC-SM-840C 3.7.2 (288°C / 10 sec, 1cycle)	Passed
Adhesion	Cross Cut 10x10 & Tape peeling test On Cu foil/FR-4	IPC-SM-840C 3.5.2 IPC TM 650 2.4.16 (ASTM D3359) (J-STD-003)	Passed
Solvent Resistance	PGM-Ac and IPA, 20°C / 30min	IPC-SM-840C 3.6.1	Passed
Electroless Ni/Au	Ni: 3 - 5μm, Au: 0.03μm	Internal Test Method	Passed

Presentation of the machine and the inkjet printable resist

🤹 MicroCraft

MicroCraft MPJ101-FG20 – Extract from the TDS

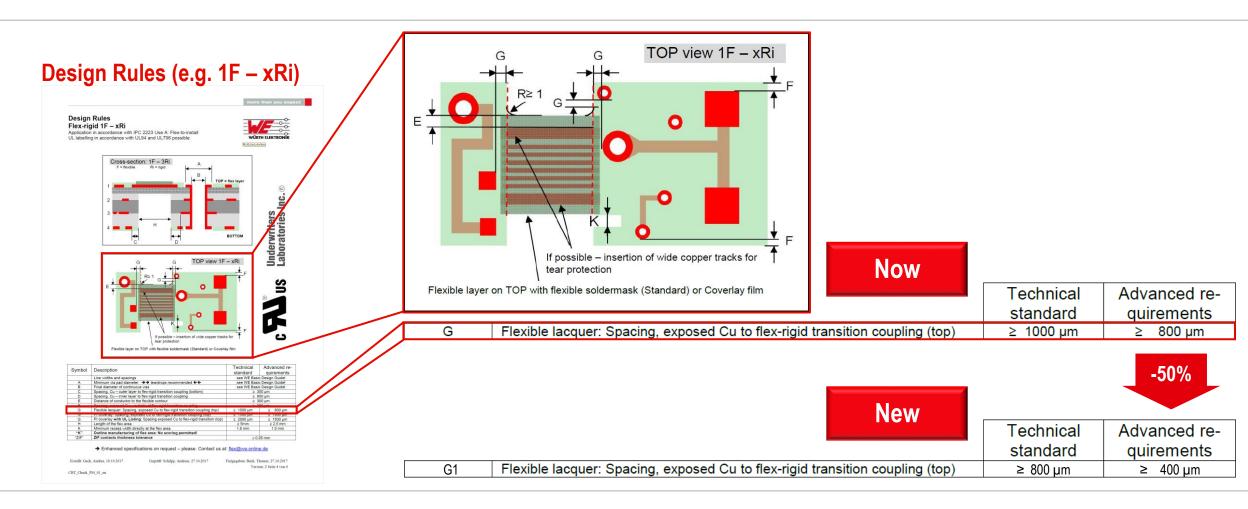
ltem		IPC-SM-840E Test Method	Standard	Result
Dielectric Strength	3.8.1	Determined in accordance with TM2.5.6.1 of IPC-TM-650.	No change of ink in DC 500V (25μm)	Passed
Insulation Resistance	3.8.2	Minimum resistance before and after soldering.	More than 5×10 ⁸ ohm More than 5×10 ⁸ ohm	Passed
Moisture & Insulation Resistance	3.9.1	25-65°C 85%RH cycling for 7days Bias voltage 50 V D.C.	More than 5×10 ⁸ ohm More than 5×10 ⁸ ohm	Passed
Electrochemical Migration	3.9.2	Class H/FT:85±2°C 90±3%RH 168hrs. Bias voltage 10 V D.C.±5%.	More than 2×10 ⁶ ohm No change of appearance	Passed
Thermal Shock	3.9.3	-65°C 15min to +125°C 15min, Transition should not exceed 2 minutes. 1000 cycles.	No blistering, crazing, and delamination	Passed
Flammability	3.6.3	UL-94	V-0	Passed
BendingTest		30µm on Polyimide Film 180° Folding (500g Weight)	Above 3Cycle No Crack, Delamination	Passed
RoHS	20	005/618/EC(IEC62321 Edition 1.0:2008)		On going
Halogen-free		JPCA-ES01-2003		On going


Presentation of the machine and the inkjet printable resist

MicroCraft MPJ101-FG20

- Excellent continuous temperature resistance at 125°C:
 - after 500h still 25 cycles 180° bending around 1mm mandrel
 - previous screen printing resist already cracks after 250h

Quick poll

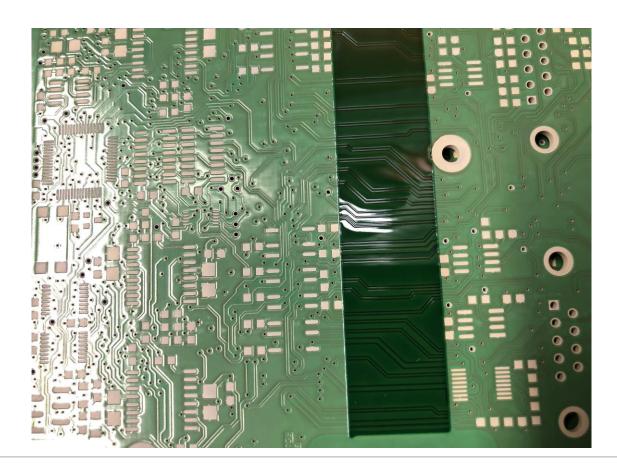

Poll

At present, we have a distance from the copper to the flex-rigid transition of 1000µm in the standard for build-ups with flexible solder resist. Which value would you like to see for a new process to support miniaturisation?

FLEXIBLE SOLDER RESIST

Comparison of the technologies – Details

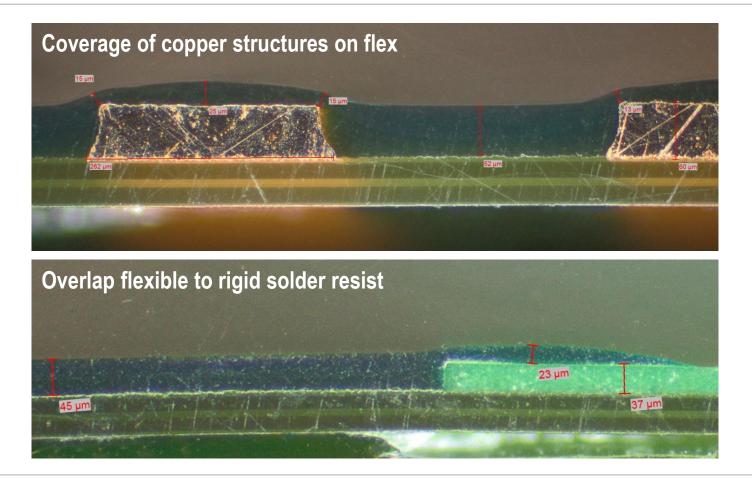
The detailed view



Higher Accuracy

- Reduction of the distances
 - flex resist to copper and thus
 - less overlapping flex resist to rigid resist

possible


- Better usage of the rigid area, especially with narrow layouts
- Further reduction possible in future

FLEXIBLE SOLDER RESIST IN ADDITIVE TECHNOLOGY The detailed view

Microsections

FLEXIBLE SOLDER RESIST

Process comparison

	conventional	digital additive	
Number of process steps			Equipment and resist costs lead
Equipment costs		Ļ	to a cost-neutral process
Resist costs	—		
Screen preparation costs		1	
Screen washout costs		1	Digital additive
Resist waste			process is more sustainable
Energy consumption			

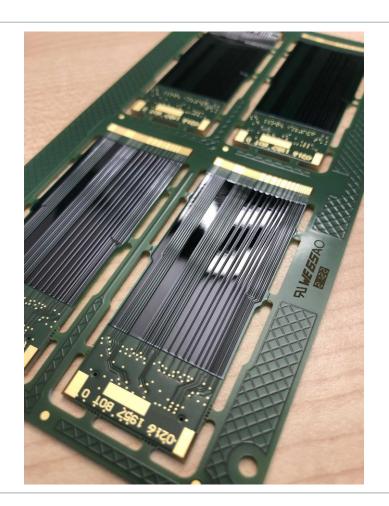
Quick poll

Poll

What further developments would you like to see from WE on the subject of flexible solder resists?

AGENDA

- **2** Flexible solder resist in additive technology
 - Process flow and procedures
 - Technology comparison
 - Presentation of the equipment and flexible inkjet solder resist


3 Summary

FLEXIBLE SOLDER RESIST IN ADDITIVE TECHNOLOGY Summary of key points

Flexible solder resist applied via Inkjet

- represents a digital and additive technology
- meets all common flexible solder resist specifications
- offers minimal thickness variation
- can be combined with legend printing
- promotes greater design freedom by reducing spacing requirements by half compared to conventional screen-printing resists
- provides higher reliability with higher bending cycles

Flexible solder resist in additive technology

