

TRANSFORMER SAFETY, UPDATES ON IEC-61558 STANDARD

Antwi Nimo Markus Häpe

WURTH ELEKTRONIK MORE THAN YOU EXPECT

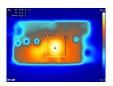
TRANSFORMER SAFETY, UPDATES ON IEC-61558 STANDARD

Outline

- Introduction to transformer safety
- How to acheive safety according to IEC-61558-1 standard
- Practical construction examples designed to meet IEC-61558-1
- Questions and discussions

Transformer safety standards and approvals are seen by customers / engineers as

HUGE PROBLEMS



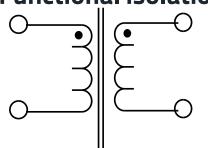
INTRODUCTION TO TRANSFORMER SAFETY

Electrical

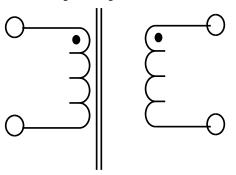
Thermal

Environment

Mechanical


Factors affecting safety

INTRODUCTION TO TRANSFORMER SAFETY - INSULATION


Functional Insulation - Is only necessary for the correct functioning of equipment

- Basic Insulation Insulation applied to live parts to provide protection against electric shock in the absence of any equipment safeguard.
- Supplementary Insulation Independent insulation applied in addition to basic insulation in order to provide protection against electric shock in the event of a failure of basic insulation.
- <u>Double Insulation</u> Comprising both basic insulation and supplementary insulation.
- Reinforced Insulation Single insulation system applied to live parts which provides a degree of protection against electric shock equivalent to double insulation.

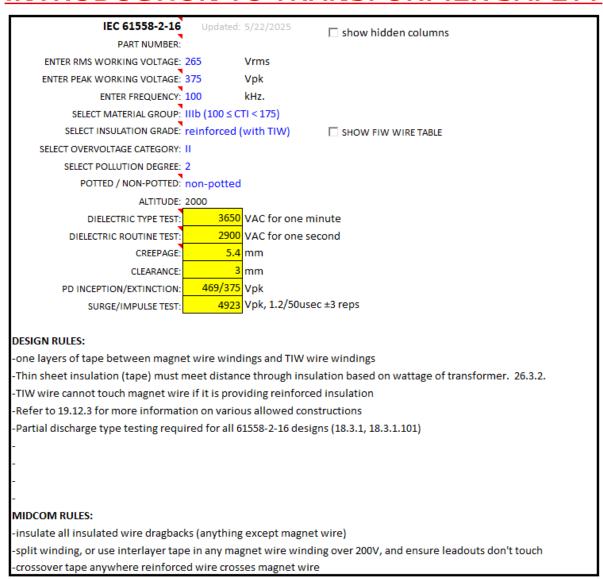
Functional isolation

Safety implemented

Basic insulation

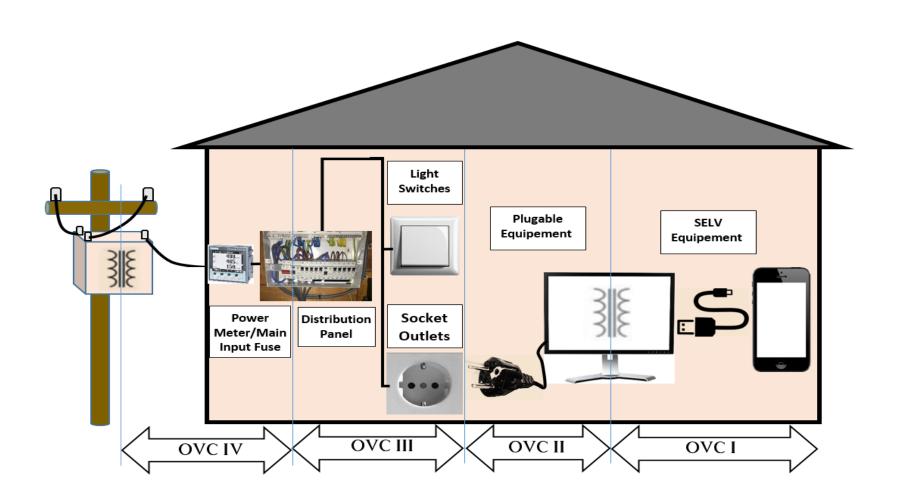
Insulation to provide basic protection against electric shock

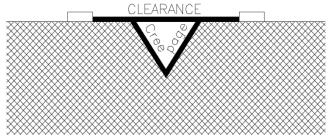
Supplementary insulation

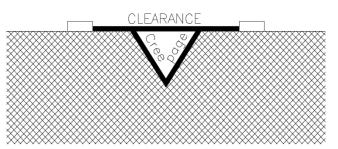

 Independent insulation applied in addition to BASIC INSULATION in order to reduce the risk of electric shock in the event of a failure of the BASIC INSULATION

Reinforced insulation

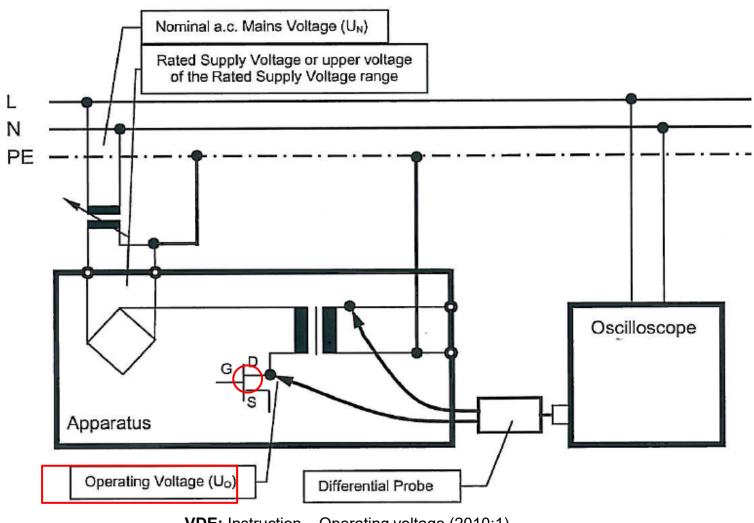
Three independent layers of INSULATION


INTRODUCTION TO TRANSFORMER SAFETY


Clearance distances now calculated with rated supply voltage according to the 2021-version



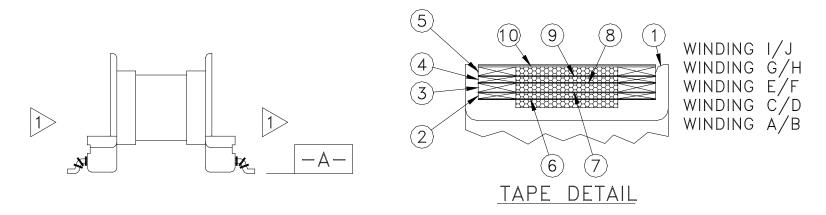
Microsoft Excel cro-Enabled Temp

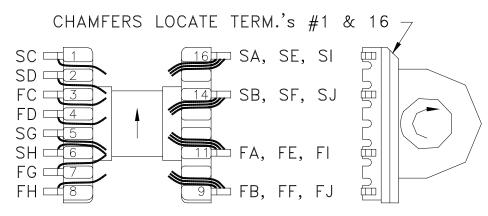

Insert animation for Cr & Cl

WORKING VOLTAGE

The highest voltage across any insulation @ the <u>rated input</u> voltage & under <u>normal</u> operating conditions. Need RMS & Peak of the working voltage.

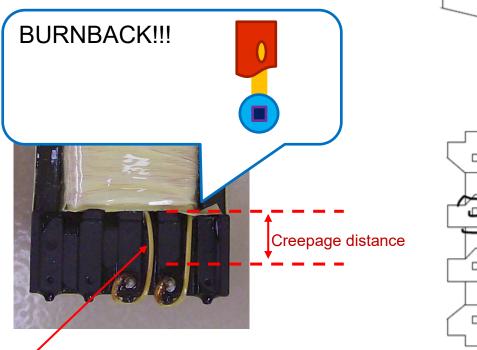
VDE: Instruction – Operating voltage (2010:1)

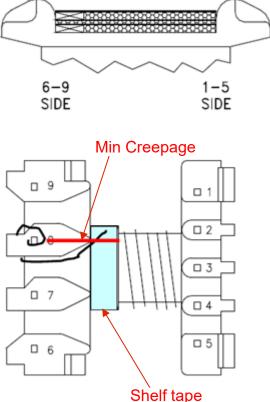

TRANSFORMER SAFETY, UPDATES ON IEC-61558 STANDARD


Outline

- Introduction to transformer safety
- How to acheive safety according to IEC-61558-1 standard
- Practical construction examples designed to meet IEC-61558-1
- Questions and discussions

Shelf (margin) tape

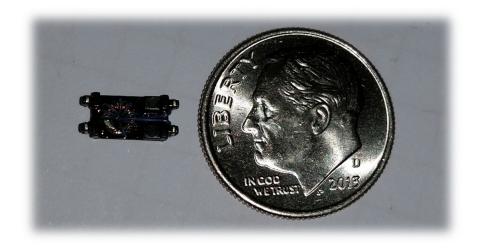


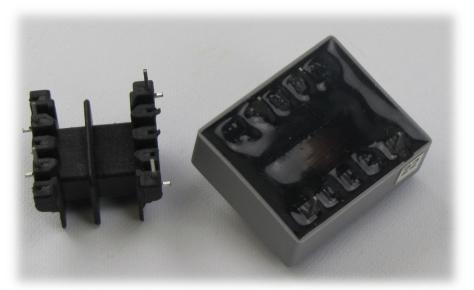


Use extended rail bobbin and / or Shelf (margin) tape to increase distance from SEC

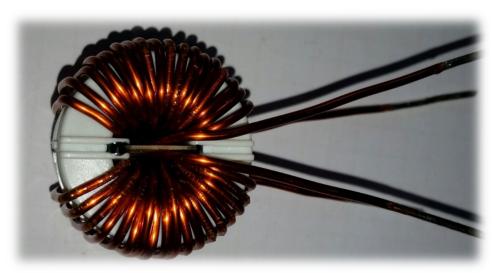
pins to PRI winding

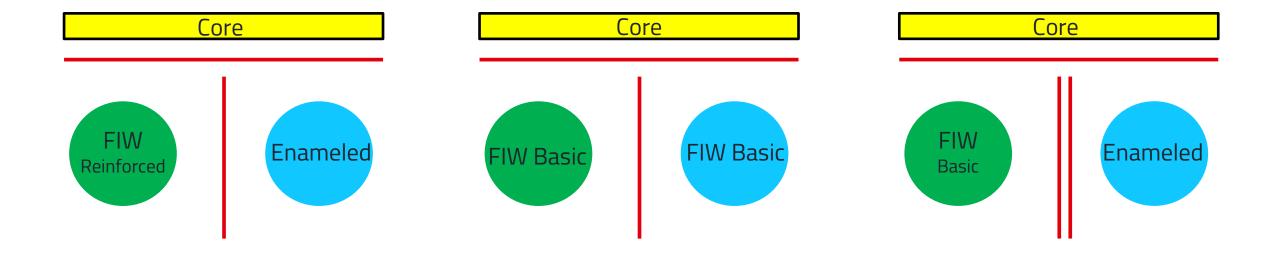
Triple Insulated Wire on SEC to insulate windings




3RD WIND BOBBIN 1ST WIND FINISH TAPE 1ST WRAPPER SOLDER 1ST SHELF 2ND WIND *ASSEMBLE 2ND WRAPPER 2ND SHELF


2- Section bobbin (EP13)


One has full coil while the other has a low coil build.


TRANSFORMER SAFETY, UPDATES ON IEC-61558 STANDARD

Outline

- Introduction to transformer safety
- How to acheive safety according to IEC-61558-1 standard
- Practical construction examples designed to meet IEC-61558-1
- Questions and discussions

Examples of reinforced Isolation using Fully insulated wires (FIW)

Construction with toroidal core and TIW For double / reinforced insulation

Primary
Enameled
wire

Toroid core
needs coating
for basic
insulation

Secondary
TIW

Mechanical separation for basic insulation

Construction with toroidal core and FIW For double / reinforced insulation

Primary
Basic
insulated
FIW

Toroid core
needs coating
for basic
insulation
FIW

Secondary
Reinforced
insulation FIW

Mechanical separation for basic insulation

Construction with toroidal core and TIW/FIW
For double / reinforced insulation

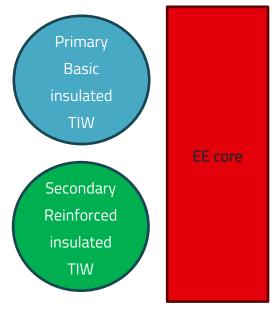
Primary Basic insulated TIW Toroid core needs coating for basic insulation

Secondary Reinforced insulation FIW

Mechanical separation for basic insulation

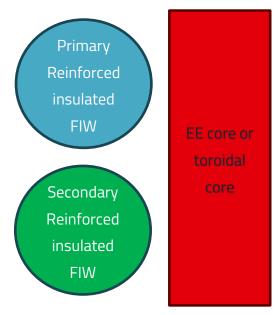
Construction with toroidal core and TIW/FIW
For basic insulation

Primary
Basic
insulated
FIW
or
Enamelled


Toroid core needs coating for basic insulation

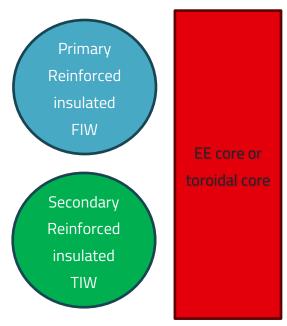
Secondary Basic insulation TIW

Mechanical separation for basic insulation

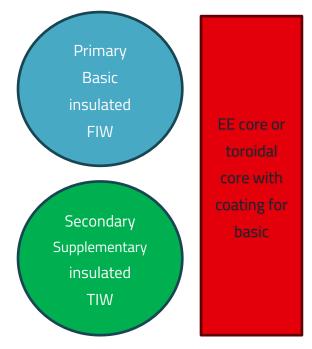


Construction with EE core and TIW For double or reinforced insulation

Mechanical separation for basic insulation between core and wire needed (EE bobbin)


Construction with EE core and FIW For double or reinforced insulation

Mechanical separation for basic insulation between core and wire needed (EE bobbin)



Construction with EE core and FIW For double or reinforced insulation

Mechanical separation for basic insulation between core and wire needed (EE bobbin)

Construction with EE core and TIW/FIW For double or reinforced insulation

Mechanical separation for basic insulation between core and wire needed (EE bobbin)

We are here for you now!

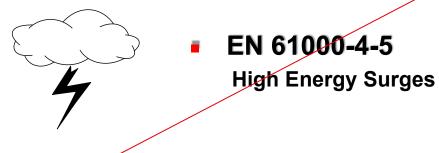
COMMON SAFETY STANDARDS

IEC 62368-1 -> Audio Video and information technology equipment

(Safety standard replacing IFC 60950 & IFC 60065)

- IEC 60950-1 Safety of information Technology Equipment (Obsolete end 2020)
- IEC 61558-1 Safety of Power transformers and Power Supplies.
- IEC 60601-1 Safety of Medical Electrical Equipment
- IEC 61010-1 Safety of Measurement Control and Laboratory Equipment
- UL 1446 [lectrical Insulation Systems]

POLLUTION DEGREE


IEC 62368-1 defines pollution degree as below:

- **Pollution Degree 1** applies where there is no pollution or only dry, non-conductive pollution. The pollution has no influence. Normally, this is achieved by having components and subassemblies adequately enclosed by enveloping or hermetic sealing so as to exclude dust and moisture.
- Pollution Degree 2 applies where there is only non-conductive pollution that might temporarily become conductive due to condensation. It is generally appropriate for equipment covered by the scope of this standard.
- Pollution Degree 3 applies where a local environment within the equipment is subject to conductive pollution, or to dry non-conductive pollution that could become conductive due to expected condensation.

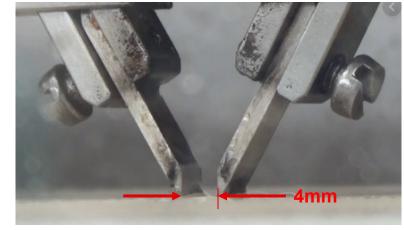
 Natural phenomena (eg: lightning strikes)

 Industrial discharge (eg: switching off inductive loads)

 Electro-static discharge (eg: between humans and objects)

EN 61000-4-4
 E.F.T.
 Electrical Fast Transients

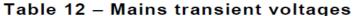
EN 61000-4-2 E.S.D.

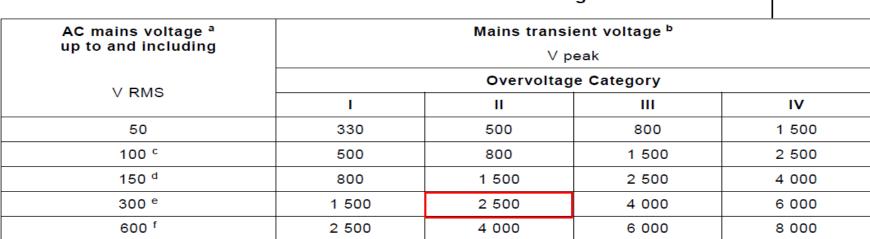

EU's transient immunity standards for commercial products

The product must continue to operate as intented, without degradation of loss of function after the transient immunity test

MATERIAL GROUP – TRACKING INDEX

- The voltage which causes tracking after 50 drops of 0.1% ammonium chloride solution have fallen on the material. The results of testing at 3 mm thickness are considered representative of the material's performance in any thickness.
- Tracking is an electrical breakdown on the surface of an insulating material. A large voltage difference gradually creates a conductive leakage path across the surface of the material by forming a carbonized track.


	IEC rating(Material Group)	UL rating (PLC)	Comparative Tracking Index			
			(volts)			
Best material	→	0	≥600V			
		1	400V≤ CTI < 600V			
	Illa	2	250V≤ CTI < 400V			
		3	175V≤ CTI < 250V			
	IIIb	4	100V≤ CTI < 175V			
	None	5	0V≤ CTI < 100V			



Overvoltage categories by IEC 62368-1 CHECK if 62368 is Ükat III + IV

Overvoltage category	Equipment and its point of connection to the AC mains	Examples of equipmen				
IV	Equipment that will be connected to the point where the mains supply enters the building	 Electricity meters Communications ITE for remote electricity metering 				
III	Equipment that will be an integral part of the building wiring	 Socket outlets, fuse panels and switch panels Power monitoring equipment 				
II	Pluggable or permanently connected equipment that will be supplied from the building wiring	 Household appliances, portable tools, home electronics Most ITE used in the building 				
ı	Equipment that will be connected to a special mains in which measures have been taken to reduce transients	ITE supplied via an external filter or a motor driven generator				

62368!

230Vac

Transients

For equipment designed to be connected to a three-phase 3-wire supply, where there is no neutral conductor, the AC **mains** supply voltage is the line-to-line voltage. In all other cases, where there is a neutral conductor, it is the line-to-neutral voltage.

b The mains transient voltage is always one of the values in the table. Interpolation is not permitted.

In Japan, the value of the **mains transient voltages** for the nominal AC **mains** supply voltage of 100 V is determined from columns applicable to the nominal AC **mains** supply voltage of 150 V.

d Including 120/208 V and 120/240 V.

e Including 230/400 V and 277/480 V.

f Including 400/690 V.

Temporary Overvoltage

CL&CR

Dimensioning of clearances

IEC 61558-1:2017 @ IEC 2017

- 115 -

Table 20 - Clearances in mm

Overvoltage category		Pollution degree	Working voltage [V]							
	Insulation of the conductive part		≥ 25 ≤ 50	100	150	300	600	1 000		
		P1		-		-	-			
	Basic insulation	P2	0,2	0,2	0,2	0,5	1,5	3,0		
		P3	0,8	0,8	8,0	0,8	1,5	3,0		
	0	P1	-	-	-	-	-			
OVCI	Supplementary insulation	P2	0,2	0,2	0,2	0,5	1,5	3,0		
7.7	insulation	P3	0,8	0.8	8,0	0,8	1,5	3.0		
	Double or	P1	-	-	-	-		-		
	reinforced	P2	0.2	0.2	0.5	1,5	3.0	5.5		
	insulation	P3	0.8	0.8	0.8	1,5	3.0	5.5		
		P1	-	-	-	-	100	1.0		
	Basic insulation	P2	0.2	0.2	0.5	1.5	3.0	5.5		
		P3	0,8	0.8	0.8	1,5	3.0	5.5		
	Supplementary insulation	P1	-	-	-	-	-	-		
ovc II		P2	0.2	0.2	0.5	1,5	3.0	5.5		
		P3	0.8	0.8	0.8	1,5	3.0	5.5		
	Double or	P1	-	-	-	-	-	-		
	reinforced	P2	0.2	0.5	1.5	3.0	5.5	8.0		
	insulation	P3	0.8	0.8	1,5	3,0	5.5	8.0		
		P1		-	-	-	-	-		
	Basic insulation	P2	0.2	0.5	1.5	3.0	5.5	8.0		
		P3	0.8	0.8	1.5	3.0	5.5	8.0		
	19.1077777777777777777777777	P1	-	-	-	-	-	-		
OVC III	Supplementary	P2	0.2	0.5	1.5	3.0	5.5	8.0		
	insulation	P3	0,8	0.8	1,5	3,0	5.5	8.0		
	Double or	P1		-		-	-	-		
	reinforced	P2	0.5	1.5	3.0	5,5	8.0	14,0		
	insulation	P3	0.8	1.5	3.0	5.5	8.0	14.0		

SIQ

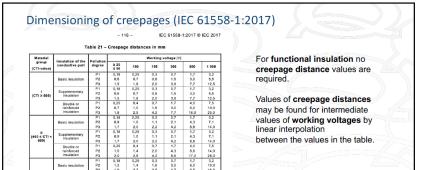
Dimensioning of clearances - altitude

The clearances given are valid up to 2 000 m.

For altitudes above 2 000 m, Table A.2 (IEC 60664-1) should be used to determine the altitude correction factors for **clearance** correction.

Linear interpolation is acceptable between two adiacent values of Table A.2.

able A.2 – Altitude correction factors for clearance correction

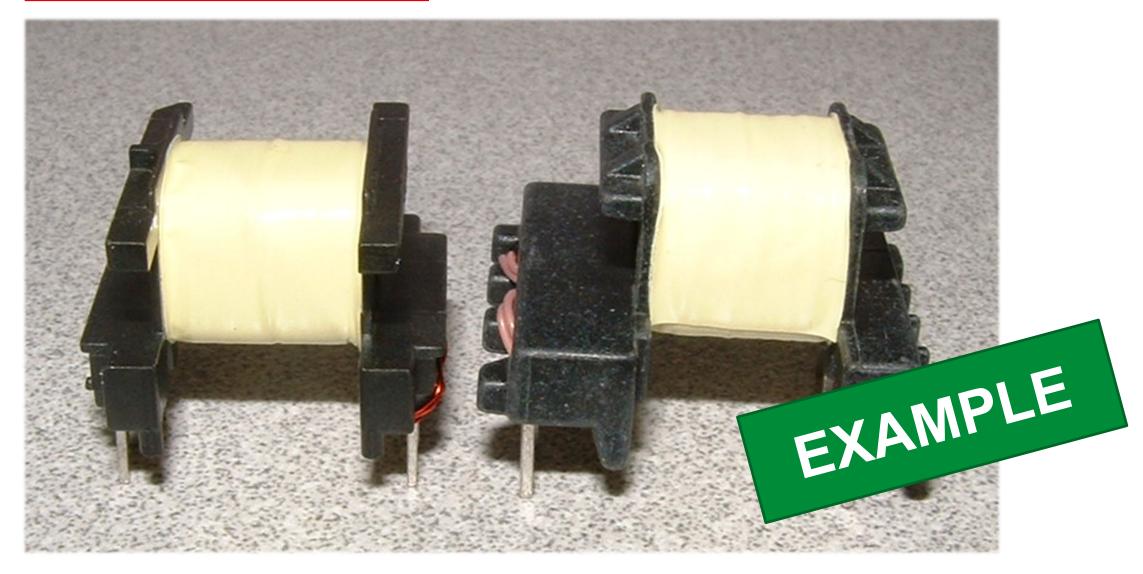

Altitude	Normal barometric pressure	Multiplication factor k _d for clearances				
m	kPa					
2 000	80,0	1,00				
3 000	70,0	1,14				
4 000	62,0	1,29				
5 000	54,0	1,48				
6 000	47,0	1,70				
7 000	41,0	1,95				
8 000	35,5	2,25				
9 000	30,5	2,62				
10 000	26,5	3,02				
15 000	12,0	6,67				

58 **SI**

Dimensioning of clearances

- · For functional insulation no clearances are required
- Values of clearances may not be interpolated between the values in the table (different in past)
- Also locations are not defined anymore (next slides

Heute über Bemessungsnetzspannung ermitteln

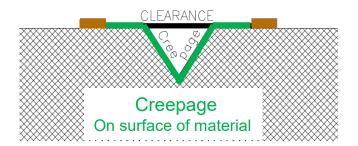

Dimensioning of	creepages	(IEC 61558-2-16:2009	+ A1:2013)

Working- voltage	Creepage distance (mm)												
U _{peak} /ky a	30 kHz <f<100 khz<="" th=""><th>f<150 kHz</th><th>f<200 kHz</th><th>f<300 kHz</th><th>f-:400 kHz</th><th>f<500 kHz</th><th>f<600 kHz</th><th>f<700 kHz</th><th>5<800 kHz</th><th>f<900 kHz</th><th>f<1 MHz</th><th>f<2 MHz</th><th>f<3 MHz</th></f<100>	f<150 kHz	f<200 kHz	f<300 kHz	f-:400 kHz	f<500 kHz	f<600 kHz	f<700 kHz	5<800 kHz	f<900 kHz	f<1 MHz	f<2 MHz	f<3 MHz
0.1	0,02					-	-		-	-	-	-	0,30
0,2	0,04	-	-			-	-			-	-	0,15	2,80
0,3	0,08	0,09	0,09	0,09	0,09	0.09	0,09	0,09	0,09	0,09	0,09	0,80	20,00
0.4	0,13	0.13	0,13	0.14	0,15	0.16	0,18	0,19	0,24	0.30	0.35	4,50	
0,6	0,18	0,19	0,19	0,22	0,25	0,30	0,35	0,40	0,77	1,13	1,50	20,00	
0,6	0,27	0,27	0,27	0,34	0,40	0.55	0,70	0,85	2,23	3,62	5,00		
0,7	0,36	0,37	0,38	0,53	0,68	1,09	1,49	1,90	7,93	13,97	20,00		
0,8	0,45	0,50	0,55	0,83	1,10	2,00	2,90	3,80		-	-	-	
0,9	0,53	0,57	0,82	1,36	1,90	4,17	6,43	8,70			-		
1	0,60	0,88	1,15	2,08	3,00	8,00	13,00	18,00					
1,1	0,68	1,19	1,70	3,35	5,00					-	-		
1,2	0,85	1,53	2,40	5,30	8,20	-	-		-	-	-	-	
1,3	1,20	2,35	3,50							-			
1,4	1,65	3,33	5,00			-				-	-	-	
1,5	2,30	4.80	7,30	-		-	-		-	-	-	-	
1,6	3,15	-			-	-		-	-	-	-	-	
1,7	4,40				-					-	-		-
1,8	6,10					-							

SIQ

EE16/8/5 COIL COMPARISON

CREEPAGE AND CLEARANCE


Clearance distances (distance through air) determined by:

- Temporary overvoltage & recurring voltage
- Transient voltage (from mains supply & external circuit)
- Peak working voltage (maximum system voltage between PRI & SEC)
- Pollution Degree
- Frequency of the Mains & Working Voltage
- Max operating Altitude (if higher than 2000m)
- Insulation grade (Basic, Supplementary, Reinforced)

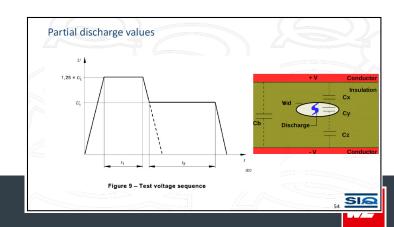
- > RMS working voltage; peak for freq>30kHz
- Pollution Degree
- Frequency of the working Voltage
- Material Group (Comparative Tracking Index "CTI")
- Insulation grade (Basic, Supplementary, Reinforced)

COMMON INPUTS REQUIRED

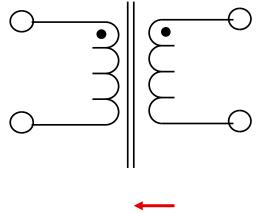
- Material Group by Comparative Tracking Index (CTI)
- Insulation Grade
- Pollution Degree
- Overvoltage Category
- Input Voltage Range
- Peak & RMS Working Voltage
- & WV Frequencies
- Altitude

SO... IS IT ALL ABOUT DIELECTRIC, CREEPAGE AND CLEARANCE?

- Standards also include specific construction requirements.
 - Some allow different materials: for example VDE allows FIW (magnetwire) to achieve insulation on IEC 61558-2-16 or IEC 62368-1
 - Some have special mechanical restrictions: for example IEC 62368-1 requires protection against mechanical stress for wires that cross at 45°-90°.

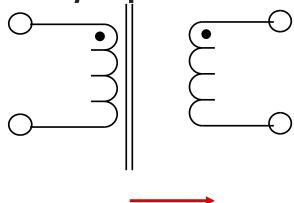

IEC 61558-2-16

- One layers of tape between magnet wire windings and TIW wire windings
- TIW wire cannot touch magnet wire if it is providing reinforced insulation
- When using FIW wire, wire must not touch any other magnet wire
- Partial discharge testing require for designs using FIW+TIW with peak working voltage over 750VDC (amendment 1)


IEC 62368-1

- Production hipot test shall be 1-4s, and the test voltage may be reduced by 10% (5.4.9.2)
- All windings shall have the end turns (drag backs) retained by positive means (G.5.3.2.1)
- Protect against mechanical stress at 45° to 90° wire crossings (G.5.1.2)

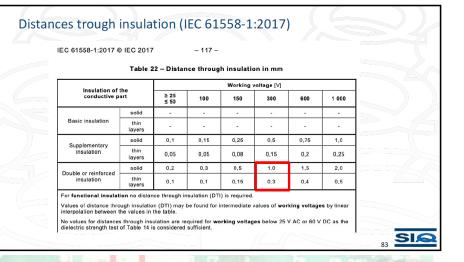
Bilder? Nachhaltigkeit Umwelt Tempertaur etc???



Functional isolation

- Increased efficiency
- Standard component size
- Standard cost

Safety implemented



- Reduced efficiency
- Increased component size
- Cost increase

INTRODUCTION TO TRANSFORMER SAFETY

INSULATION GRADES

- Several grades of insulation are defined for each standard
 - Functional Insulation Is only necessary for the correct full provide any protection against electric shock.

- Basic Insulation Insulation applied to live parts to provide basic protection against electric shock.
- Supplementary Insulation Independent insulation applied in addition to basic insulation in order to provide protection against electric shock in the event of a failure of basic insulation.
- Double Insulation Comprising both basic insulation and supplementary insulation.
- Reinforced Insulation Single insulation system applied to live parts which provides a degree of protection against electric shock equivalent to double insulation.

Solid insulation - REDUCTION OPTIONS

26.3.2 In case of solid insulation, the required values are specified in the Table 22. For classified materials in accordance to IEC 60085 and IEC 60216 (all parts), distances through insulation multiplied by 0,4 with a minimum of 0,2 mm for reinforced insulation and of 0,1 mm for supplementary insulation for working voltage above 25 V may

Thin sheet material – REDUCTION OPTIONS

- 1.) For classified materials in accordance to IEC60085 and IEC60216 (all parts), no requirements for distances through insulation are required if the test of 14.3 is fulfilled.
- 2.) The required values of Table 22 for thin layers shall be used as follows:
 - for transformers having a rated output greater than 100 VA, the values for thin layers apply;

