

TRANSFORMER CHARACTERIZATION IN A FLYBACK CONVERTER

Isaac Aboelsaad-- Product Definition Engineer

WURTH ELEKTRONIK MORE THAN YOU EXPECT

TABLE OF CONTENT

- WBG material impact on magnetics
- Transformer's parasitic impact on a Flyback converter
- Design requirement for a Flyback converter
- EMC considerations
- Designs and conclusion

WBG AND ITS IMPACT ON MAGNETICS

Property	Si	GaN
E _g (eV) – band gap	1.1	3.39
E _c (MV/cm) – critical electric field	0.3	3.33
ϵ_r – dielectric constant	11.9	9
$\mu_n (cm^2/Vs)$ – electron mobility	1350	1700

Figure 1: Material properties of GaN and Si

Figure 2: Basic Lateral Structure of GaN FET

The lateral structure of the HEMT (high electrons mobility Transistor) make possible high-speed operation, low capacitance device and low on-resistance which permit high operation frequencies compared to the traditional Si devices

TRANSFORMER'S PARASITIC IMPACT ON A FLYBACK CONVERTER

Dout Vout The Flyback topology is by far the most common topology Cout Rout for converters <100W this is due primarily to its low component count and its fairly easy design and 0 manufacturing. The total losses during Turn ON can be resumed in two main parameters: The first is Coos dependent on Drain to Source voltage:

 $P_{SW-ON(Coss)} = f_{SW} \int_{0}^{V_{DS(OFF)}} C_{OSS}(V_{ds}) V_{ds} dV_{ds}$

The second contribution which is topology related, is due to the transformer parasitic capacitance Cp. This capacitance is discharged in the GaN switch at Turn ON and is constant:

$$P_{SW-ON(Cp)} = \frac{1}{2} C_P V_{DS(OFF)}^2 f_{SW}$$

TRANSFORMER'S PARASITIC IMPACT ON A FLYBACK CONVERTER

Figure3: Standard Flyback converter (Transformer Model)

Another important source of inefficiency for a traditional Flyback would be the leakage inductance

During turn OFF, the energy stored in the leakage inductance is being released onto the Switching device. To avoid any possible damage and the high voltage spikes, this energy can be dissipated via a snubber circuit, in this case an RCD.

The adoption of GaN MOSFET reduces the component that is related to the output capacitance of the device, but there is still power dissipation due to the transformer parasitic that we need to control.

• A Flyback Transformer isn't really a transformer but rather a coupled inductor since the energy transfer between the Prim and the Sec isn't instant. The transformer needs to store energy in the core

• How can we store more Energy in the core ?

 \uparrow Energy $\propto \frac{V_c}{\downarrow \mu_c}$ Add an air gap to core to reduce the equivalent permeability Energy (store in an inductor) = $\frac{1}{2} L_{ind} I_{peak}^2$ $I_{sat-prim} \gg I_{Pri or required for design}$ Max. Energy (store in an inductor) $\approx \frac{1}{2} L_{ind} I_{sat}^2$

• The inrush current while starting the flyback converter can saturate the transformer even for a short duration

$I_{sat-prim} \gg I_{Pri or required for design}$

© ELECTRICAL SPECIFICATIONS @ 25°C unless otherwise noted:

Important requirement for Flyback transformer

	PARAMETER		TEST CONDITIONS	VALUE
	D.C. RESISTANCE	1-3	@20°C	3.15 ohms ±10%
	D.C. RESISTANCE	5-4	@20°C	0.81 ohms ±10%
	D.C. RESISTANCE	7-9	tie(6+7, 8+9), @20°C	0.021 ohms ±20%
	INDUCTANCE	1-3	10kHz, 100mVAC, Ls	1.59mH ±10%
	SATURATION CURRENT		20% rolloff from initial	480mA
	LEAKAGE INDUCTANCE	1-3	tie(4+5, 6+7+8+9), 100kHz, 100mVAC, Ls	23uH typ., 34uH max.
6C)	DIELECTRIC	3-7	tie(3+4, 7+8), 4500VAC, 1 second	3600VAC, 1 minute
	TURNS RATIO		(3-1):(7-9), tie(6+7, 8+9)	15:1, ±1%
	TURNS RATIO		(3-1):(5-4)	8.571:1, ±1%

• Unlocking higher operating frequency thanks to the use of GaN Ics led us to take into account the choice of a proper core material

We currently use MnZn core materials that allow good behavior of the transformer up to 1 MHz

• The leakage inductance is an important parameter we should make sure of supressing in a Flyback transformer. The rule of thumb mostly specify a max value of 5% of the nominal inductance value

hins

Average winding

length

DESIGN REQUIREMENTS FOR A FLYBACK CONVERTER

• For a solenoid structure with symmetrical turn ratio,

• How does the transfromer structure impact the leakage inductance?

Reference: Würth Elektronik eiSos, Trilogy of Magnetics, handbook

• How does the transfromer structure impact the leakage inductance?

To improve the coupling between the windings we can sandwich the first winding around the second. This reduces the average distance between the windings and results in 1/4th the original value of leakage inductance –

Reference: Würth Elektronik eiSos, Trilogy of Magnetics, handbook

life.augmented

- AC Resistance:
 - Importance for DCM mode of operation.

Discontinuous Conduction Mode

- Sawtooth current waveform on PRI & SEC
- FFT of current waveform shows a fundamental @ switching frequency + harmonics
- So importance of AC resistance comes to the equation

Design Requirements

• AC Resistance:

Reference: Trilogy of Magnetics

- Important of this resistance appears in DCM mode of operation.
- At higher frequencies (e.g. GaN converters), AC resistance is the dominant for copper losses

Dowell's curves showing rapid increase in ac resistance factor (Fr) as the wire thickness relative to skin depth (ϕ) and number of winding layers (m) increase

Design Requirements

- AC Resistance:
 - Important of this resistance appears in DCM mode of operation.
 - At higher frequencies, AC resistance is the dominant for copper losses
 - Modeling of AC resistance:
 - Analytical or theoretical model -> not easy (check text books)
 - Need to study the effect of:
 - Proximity effect
 - Skin depth
 - 2D or 3D model using FEM:
 - Ansys -> Maxwell

Direction of current remains same.

Circuit Globe

Skin Depth is: $\delta = \sqrt{\frac{1}{\pi f \mu_0 \mu_r \sigma_0 \sigma_r}}$

Design Requirements

- AC Resistance:
 - Litz wire to optimize AC resistance
 - Example:
 - Transformer for Offline Flyback DCM topology at 100kHz operating freq.

Line: 230V / Load: 30W

Transformer with solid wire

Line: 230V / Load: 30W

Optimized transformer using litz wire

EMC CONSIDERATIONS

Authorized Partner

- Switching voltage across parasitic capacitance causes CM current flow to EARTH
- CM noise also radiated to other circuit nodes

3. <u>Filtering</u>:

- Increase impedance of the EARTH return path
- Provide alternative routes for the HF current

EMC CONSIDERATIONS

COMMON MODE MITIGATION BY TRANSFORMER INTERNAL SHIELDING

Shield added to keep most of CM current local to primary

Shield is 1-turn winding \Rightarrow lower induced voltage, less voltage across parasitic capacitance between shield & sec \Rightarrow less

CM current flows

Shield must be thin (< 50 μ m) \Rightarrow minimize induced eddy current loss

Eddy currents get very significant as FSW increases

EMC CONSIDERATIONS

- CM MITIGATION BY CANCELLATION/BALANCE
- Single-ended topologies can add explicit additional cancellation elements
 - Add auxiliary (AUX) transformer winding
 - AUX voltage proportional to CM waveform
 - Arrange AUX polarity for opposite phase
 - Capacitor to inject cancelling current, I_{CM2}, to balance CM current from primary, I_{CM1}
 - Injection capacitor explicit physical component added to design
 - Or can use parasitic capacitance, e.g., C_{S-AUX}, part of transformer structure

DESIGN AND CONCLUSION

Ref design, EVLVIPGAN50PD 45W QR USB PD

Ref design, EVLVIPGAN65PD 65 W USB Type-C PD

Authorized Partner

2%

ELECTRICAL SPECIFICATIONS @ 25°C unless otherwise noted:

PARAMETER		TEST CONDITIONS	VALUE
D.C. RESISTANCE	10-1	@20*C	0.31 ohms max.
D.C. RESISTANCE	4-7	tie(4+5, 6+7), @20*C	0.02 ohms max.
D.C. RESISTANCE	3-2	@20*C	0.43 ohms max.
INDUCTANCE	10-1	100kHz, 100mVAC, Ls	400.00uH ±10%
SATURATION CURRENT	10-1	20% rolloff from initial	24
LRAKAGE INDUCTANCE	10-1	tie(2+3+4+5+6+7), 100kHz, 100mVAC, Is	Bull max.
DISTRIBUTED CAPACITANCE	10-1	100mVAC, Cs	50pF ref.
DIFLECTRIC	10-4	tie(1+2, 4+5), 4000VAC, 1 second	4000VAC, 1 minute
DIELECTRIC	10-3	625VAC, 1 second	-
TURNS RATIO		(10-1):(4-7), tie(4+5, 6+7)	7.5:1
TURNS RATIO		(10-1):(3-2)	3.21:1

PRI 160-373Vdc 73kHz 3 4UX 24V - 30mA 2

ELECTRICAL SPECIFICATIONS @ 25° C unless otherwise noted:

PARAMETER		TEST CONDITIONS	VALUE
D.C. RESISTANCE	10-1	@20°C	0.35 ohms max.
D.C. RESISTANCE	4-7	tie(4+5,6+7), @20°C	0.01 ohms max.
D.C. RESISTANCE	3-2	@20°C	0.26 ohms max.
INDUCTANCE	10-1	100kHz, 100mV, Ls	350.00µH ±10%
SATURATION CURRENT	10-1	20% rolloff from initial	2.34
LEAKAGE INDUCTANCE	10-1	tie(2+3+4+5+6+7),100kHz, 100mV, Ls	4.5µH typ., 8.0µH max.
DISTRIBUTED CAPACITANCE	10-1	100mVAC, Cs	40pF typ., 70pF Max.
DIELECTRIC	10-4	tie(1+2,4+5), 4000VAC, 1 second	4000VAC, 1 minute
DIELECTRIC	10-3	625VAC, 1 second	
TURNS RATIO		(10-1):(4-7), tie(4+5,6+7)	13.33:1
TURNS RATIO		(10-1):(3-2)	5:1

Customer to the terminals 4+5 and 6+7 on PC board.

Application of the transformer allows for the leadwires between terminals 485 and 687 to solder bridge.

ELECTRICAL SPECIFICATIONS @ 25° C unless otherwise notea:

PARAMETER		TEST CONDITIONS	VALUE
D.C. RESISTANCE	12-1	@20°C	0.335 ohms ±10%
D.C. RESISTANCE	10-3	@20°C	0.079 ohms ±10%
D.C. RESISTANCE	3-2	@20ºC	0.220 ohms ±10%
D.C. RESISTANCE	FL1-FL2	@20ºC	0.016 ohms ±20%
INDUCTANCE	12-1	100kHz, 100mV, Ls	500µH±10%
SATURATION CURRENT	12-1	20% rolloff from initial	3.5A
LEAKAGE INDUCTANCE	12-1	1le(2+3+10,FL1+FL2),100kHz, 100mV, Ls	4.5μH typ., 7.5μH max.
DIELECTRIC	12-FL1	tie(1+10), 3650VAC, 1 second	3650VAC, 1 minute
DIELECTRIC	12-10	625VAC, 1 second	500VAC, 1 minute
TURNS RATIO		(12-1):(10-2)	2.53:1
TURNS RATIO		(12-1):(3-2)	3.43:1
TURNS RATIO		(12-1):(FL1-FL2)	6:1

CONCLUSION

- Flyback Transformers are about storing Energy
- Trasformer structre impacts the leakage inductance
- Saturation current limitations
- Considering AC Resistance in the design of the transformer
- Decreasing EMI issues with increasing switching frequency

