

-824-82:

WE Backup Your Application Hot Swappable Supercapacitor Backup Solution

1111111

Frank Puhane

Leader Technical Engineering eiCap / eiRis Capacitors & Resistors Division

Agenda

Short roundup about Supercapacitors

- Classification of Supercapacitors
- Model parameters and performance
- Charge-, discharge and frequency behavior

WE Backup Your Application

- Hot Swappable Supercapacitor Backup Solution
- Overview and general information
- Design-in process and lifetime
- Performance of the complete solution

Classification of Capacitors

Types of Supercapacitors based on design of electrodes:

- Double layer capacitors
 - Electrodes: carbon or carbon derivatives
 - Pseudocapacitors
 - Electrodes: oxides or conducting polymers (high faradaic pseudocapacitance)
- Hybrid capacitors
 - Electrodes: special electrodes with significant double-layer capacitance and pseudocapacitance

Supercapacitors vs. Batteries and Capacitors

Capacitors

- Very fast charging and discharging (<< sec)
- Very high power output
- Very low energy capacity

Supercaps

- **Fast charging** and discharging (min sec)
- High life cycle (\approx 500,000 cycles)
- High power output
 - ≈ 10 times higher than Li-ion battery
- Low energy capacity
 - \approx 30 times lower than Li-ion battery
- Energy: 0.002 Wh 0.04 Wh
- Power: 36 W 90 W

Batteries

- Long charging time (hours)
- High energy capacity
- Low power output
- Energy: 1.4 Wh
- Power: 6 W

Structure of the Supercapacitor

Parameter and Performance

- **U**_r, Rated Voltage:
 - is not determined by the equivalent circuit but by electrochemistry (Decomposition Voltage)
 - Non-Aqueous Electrolyte (typ.): $\approx 2 V \dots 3V$
 - Aqueous Electrolyte (typ.): $\approx 1.5 V$

- *R_{ESR}*=> ESR
- *R_{Leak}* => Leakage

 Influence on charge storing

capabilities ($R_{Leak} \approx 10 \text{ k}\Omega \dots 1 \text{ M}\Omega$)

Performance Parameters:

• Energy storage capacity:

 $E = \frac{1}{2} \times \boldsymbol{C} \times \boldsymbol{U_r^2}$

- Maximum Power output: $P_{max} = \frac{U_r^2}{4 R_{ESR}}$
- Characteristic R-C Time:

 $\tau = \mathbf{R}_{\mathbf{ESR}} \times \mathbf{C}$

С

 R_{ESR}

*R*_{Leak}

28.04.2021

Agenda

Short roundup about Supercapacitors

- Classification of Supercapacitors
- Model parameters and performance
- Charge-, discharge and frequency behavior

WE Backup Your Application

- Hot Swappable Supercapacitor Backup Solution
- Overview and general information
- Design-in process and lifetime
- Performance of the complete solution

LTC3351 – Overview

- Hot Swappable Supercapacitor Backup Solution
- WE want 30W for 15sec. (12V @ 2.5A) at the output

• Why we use LTC3351?

- Integrated hot swap controller with circuit breaker
- High efficiency synchronous step-down CC/CV charging of one to four series Supercapacitors
- Step-up mode in backup provides greater utilization of stored energy in Supercapacitors
- 16-bit ADC for monitoring system voltages/currents, capacitance, and ESR
- Contains an I2C/SMBus compatible port allows communication with the LTC3351 for configuration and reading back telemetry data

What is Hot Swap / Hot Plug

Hot Swapping

- Replacing or adding components
- No shutdown or stopping of the running system
- No interruption to the system
- Pre-Charging thru special pins
- Current limiter or soft start can protect the circuit

Hot Plug

- Hot plugging describes only the addition of components that would expand the system
- No significant interruption to the system

Specification of the Application

Specification of the Application

- 24V input to output rail
- Step-Up mode V_{out}

 $-V_{out} = 12 V$

- Step-Down mode V_{CAP}
 - 4 Supercapacitors
 - $-V_{CAP} = 10.6 V$
- No direct supply from V_{CAP}
 - V_{CAP} < V_{out}
- f_{sw}
 - 450 kHz
- Input current limit

- I_{max_charge} = 2,5 A

- **Constant Power Discharge**
- Supply the load and charge the Supercapacitor

LTC3351 Hot Swap / Hot Plug

How to Choose the Supercapacitor

- Backup is defined due to the application
- The four steps of design-in
 - <u>Choose the mode of discharge</u>
 - Constant Power
 - <u>Calculate the capacitance (operating time, output power, output current)</u>
 - 30 W => 12 V @ 2.5 A for 15 sec.
 - E = P * t = 30 W * 15 s = 450 J

•
$$C = 2 \cdot \frac{E}{V_1^2 - V_2^2} = 2 \cdot \frac{450 \, J}{10.6 \, V^2 - 2V^2} = 4.2 \, F$$

- Identify the suitable charging process
 - Constant Current, Constant Power and Constant Voltage
- <u>Calculate charging current</u>
 - Highest possible current for the LTC3351 => 6,4A

ANP077 => https://www.we-online.de/ANP077 SN009 => https://www.we-online.de/sn009

Choosing the right Supercapacitor

- WE use 50F / 2.7V Supercapacitor radial type 850617022002
 - https://redexpert.we-online.com/redexpert/#/smodule/39 _

Supercapacitor Bank

- 4 Supercapacitors in series connection
- $E_{total} = \frac{1}{2} * C_{total} * U_{VCAP}^{2}$ - $C_{total} = 12,5 \text{ F}$ - $U_{VCAP} = 10.6 \text{ V}$
 - $\Rightarrow E_{total} = 702.25 \text{ J}$
- Max. Power = U_r² / 4 * (4 * ESR)
 - V_{CAP} = 10.6 V
 - ESR for one Supercapacitor = 2.23 m Ω
 - Max. Power = 3053 W
- No balancing on board required
 - LTC3351 integrated active stack balancer
- Additional circuitry is for discharging the bank

Supercapacitor Bank

- 4 Supercapacitors in series connection
- $E_{total} = \frac{1}{2} * C_{total} * U_{VCAP}^2$ - $C_{total} = 12,5 F$ - $U_{VCAP} = 10.6 V$
 - $\Rightarrow E_{total} = 702.25 \text{ J}$
- Max. Power = U_r² / 4 * (4 * ESR)
 - V_{CAP} = 10.6 V
 - ESR for one Supercapacitor = 2.23 m Ω
 - Max. Power = 3053 W
- No balancing on board required
 - LTC3351 integrated active stack balancer
- Additional circuitry is for discharging the bank

Balancing of Supercapacitor

• Worst Case Example:

- Two in series connected capacitors with a rated capacitance of 10 F (tol.: -10%, +30%)
- Rated voltage of 2.7 V are charged at 5.4 V
- Following equations are need for the calculations:

$$- U_{g} = U_{1} + U_{2}$$

$$- U_{2} = \frac{q}{c_{2}} \text{ and } U_{1} = \frac{q}{c_{1}}$$

$$- U_{g} = 5.4 \text{ V}$$

$$- C_{1} = 13 \text{ F}$$

$$- C_{2} = 9 \text{ F}$$

- →
$$U_1 = \frac{5.4 \text{ V}}{(1.44+1)} = 2.21 \text{ V}$$

- → $U_2 = \frac{5.4 \text{ V}}{(\frac{1}{1.44}+1)} = 3.19 \text{ V}$ (Caution, Overvoltage!)

Lifetime of Supercapacitor

- Supercapacitors lose capacitance as they age
- ESR will rise over the lifetime

Lifetime of Supercapacitor

- Lifetime for 4 Supercapacitors in series
- V_{CAP} = 10.6 V
 - Voltage on a single cell => 2,65 V
- Defined Mission Profile
 - Max. Temp = 40 °C
 - Max. Voltage = 2.65 V
- We use 4 * 50 F Supercapacitors in series
 - C_{total} = 12,5 F
 - With a tolerance of -10% => C_{total} = 11.25 F
- After 12 years => C_{total} = 5.6 F
 - Calculated capacitance 4.2 F
 - Lifetime definition -30% capacitance and 2x ESR
- Lifetime depends on voltage and temperature
- Current increases self heating

Lifetime of Supercapacitor

- Same Mission Profile
- Different cell voltage with 2.3 V

- Same Mission Profile
- Different temperature at the Supercapacitor with 65 °C

Backup Solution

Backup Solution Real World

Performance Charging with Load

Performance Charging without Load

Performance Charging / Discharging

Design and Application Review

- Backup solution with a size of 10 cm x 18.5 cm
 - 3.94 inch x 7.3 inch
- Input voltage 24V / backup voltage 12 V
- Output power 30 W => 12 V @ 2.5 A
- Support Note for design-in process
- We are currently working on an evaluation kit from WE
- WE support you in your design

We are here for you now! Ask us directly via our chat or via E-Mail.

exhibition@we-online.com