

Agenda

08:30 - 09:00	Arrival Registration Coffee
09:00 - 09:50	SMPS Topologies, tips and tricks (Analog Devices)
09:50 - 10:45	Filtering Considerations for DC/DC Converters (Wurth Electronics)
10:45 – 11:10	Coffee Break & Networking Opportunity
11:10 - 12:00	The Art of Loop Compensation (Wurth Electronics)
12:00 - 13:00	Lunch
13:00 – 13:50	LTspice Examples (Analog Devices)
13:50 - 14:45	Smart Selection of Inductors and Capacitors (Wurth Electronics)
14:45 - 15:10	Coffee Break & Networking Opportunity
15:10 – 16:00	PCB Board Layout Optimisation (Analog Devices)

Agenda

Buck (Step Down) Boost (Step Up) Buck-Boost (Step Up and Step Down) SEPIC (Step Up and Step Down) Zeta (Inverse SEPIC) Inverting (Buck-Boost) CUK (Inverting) Charge Pump (High Power) **Hybrid Converter** Other combined Topologies (Cascaded) Isolateded Flyback (Isolated) Forward (Isolated) Push-Pull (Isolated)

Buck (Step Down)

Synchronous / Non Synchronous / Synchronizable

Monolythic

Pulsed Energy Flow on the input side

Additional filtering

Often input and / or output traces radiate the most

Additional LC filter

Generally trace with inductance in series is less noisy

Additional filtering

Often input and / or output traces radiate the most

Additional LC filter

Generally trace with inductance in series is less noisy

Additional filtering

Often input and / or output traces radiate the most

Additional LC filter

Generally trace with inductance in series is less noisy

Buck Hot Loops

Silent switcher - magnetic field cancellation

Cancelling Hot Loops

 The two high current loops cancel each others magnetic field, almost like enclosing the circuit in a metal box

New Silent Switcher 3

- ► Ultralow EMI Emissions
- High Efficiency at High Switching Frequency
- ► Integrated Bypass Capacitors
- ► Eliminates PCB layout sensitivity

► Ultralow LF Noise (0.1Hz to 100kHz)

► Ultrafast Transient Response

Silent Switcher®3

Silent Switcher[®]2

Silent Switcher®1

Demo setup Silent Switcher 3

12

©2024 Analog Devices, Inc. All rights reserved.

Block diagram

Boost (Step Up)

Pulsed Energy Flow on the output side

Usually Non Synchronous / Synchronous adds true shutdown

Max boost factor dependent on DCR of inductor and load resistance

Boost-Factor

Duty cycle for a boost:

$$V_{out} = \frac{V_{in}}{(1-D)}$$

But, There is a limit to how much a boost can boost:

$$\mathsf{BF} = \frac{1}{(1-D)} \frac{1}{(1 + \frac{DCR}{(1-D)^2 * R})}$$

Hot Loop Boost Regulator

Current flow during on-time:

Current flow during off-time:

AC traces:

Keep AC traces as short as possible...(ASAP)

Silent Switcher Boost Converters

Buck-Boost (Step Up and Step Down)

Very efficient

More silicon / fewer passives

Challenge is switch over

Synchronous Buck-Boost Topology Hot Loops

Input **and** Output capacitor has to deliver, depending on operation mode

LT8350S - New Generation Silent Switcher 2

- Silent Switcher 2 Architecture
 - Symmetrical hot loops
 - Internal hot loop caps
 - Cu pillars instead of bond wire
- ► Safe zero-deadtime

For Good EMI, Good Efficiency, Simple PCB

SEPIC (Step Up and Step Down)

Coupled inductors / coupling capacitor

RHP Zero

Lower efficiency compared to buck-boost

SEPIC Topology Hot Loop

Zeta (Inverse SEPIC)

No right half plane zero

Active high side switch needed (buck converter type)

Inverting (Buck-Boost)

Inverting (Buck-Boost) Topology Hot Loop

CUK (Inverting) (Ćuk)

Continuous power flow on Vin and Vout

Low noise

Special converter needed

Ćuk Converter Examples

5V to -5V, 100mA Inverting DC/DC Converter

10V to 40V Input, -12V Output Inverting Converter

Ćuk Topology Hot Loop

This topology produces the smallest interferences in comparison to all other DC/DC topologies

0.4

7820 TA016

Charge Pump (High Power)

Efficiency and Power Loss vs Load Current $V_{IN} = 48V$ EFFICIENCY V_{OUT} = 24V 1.6 99 POWER LOSS (W) 98 $f_8 = 100kHz$ ▼ V_{IN} = 24V V_{OUT} = 12V

POWER LOSS

LOAD CURRENT (A)

EFFICIENCY (%)

96

95

Hybrid Converter

Low FET voltage stress (Vin/2)

Low switching loss

High switching frequency

Small inductor

 $Vo = \frac{1}{2}Vin^*D$, tightly regulated

Current Mode control

Current Sharing (Scalable)

Other combined Topologies (Cascaded)

Boost and Charge Pump (voltage doublers)

Coupled SEPIC - CUK

Isolated Topologies

VIN: 2.7V to 100V

AHEAD OF WHAT'S POSSIBLE

analog.com

