

Power Integrity Measurement Fundamentals

ROHDE&SCHWARZ

Make ideas real

69Dighandest: P6Werlintegrity Fundamentals

1:1 Passive Probe

Advantages

- Low cost
- Excellent 1 MΩ loading at DC
 - preserves expected DC value
- Ability to scale to 1 mV/div
- Easy to connect using browser tip
 - Ground spring ground alternative

Disadvantages

- Limited BW
 - 38 MHz for ZP-1X
 - under reports V_{pp} measurements
 - masks high freq signal coupling
- Limited offset may require AC coupling
- ► No solder-in alternative

72Dightandest. Solver Thegrity Fundamentals

72

50Ω PATH

Advantages

- 50 Ω scope path typically has less noise than 1M Ω scope path
- SMA connector or solder-in pigtail allows for measurement consistency and ease of access

78Dightenhest: Solwerintegrity Fundamentals

Disadvantages

- 50 Ω loading at DC reduces power rail voltage
- Insufficient offset (requires blocking cap or AC coupling)
 - Masks DC drift
 - Eliminates ability to see true DC voltage

ß

78

R&S EXAMPLE

- Designed uniquely for measuring small perturbations on power rails
- Active, single-ended probe
- Low noise with 1:1 attenuation
- Offset compensation capability
- Built-in DC meter

Key Specifications				
Attenuation	1:1			
BW	2 GHz (or 4GHz)			
Browser BW	350 MHz			
Dynamic Range	±850 mV			
Offset Range	> ±60 V			
Probe Noise Scope standalone Scope + Probe (at 1 GHz, 1mV/div)	107 μV AC _{rms} 120 μV AC _{rms}			
Input Resistance	50 kΩ @ DC			
R&S ProbeMeter	Integrated			
Coupling	DC or AC			

82DigRahfest: \$6000 Thegrity Fundamentals

Some Power Rail Probes have an Integrated Voltmeter R&S probes call this a "ProbeMeter"

- ► Separate circuit with 18-bit ADC inside the probe
- Independent of scope ADC
- ► Measures DC value with 0.05% accuracy
 - > 10X more accurate than scope channel for DC measurement
- Eliminates need to attach a separate DVM in parallel to accurately measure DC

⁸⁴Dightahest: **P**6Wer Integrity Fundamentals

POWER RAIL PEAKING CORRESPONDS TO I²C PACKETS

NEAR FIELD PROBE 10 MHZ EMI.... COMING FROM 10 MHZ OSCILLATOR

MEASUREMENT LIMIT CHECK

- Set acceptable limit range and margin if desired
- Define "Action": trigger out, stop, screenshot, run script, more...
- Measurement Histogram and Measurement statistics provide visibility to outliers.

97

WAVEFORM HISTOGRAMS AND MASKS

- Direct measurement of power rail deviation from tolerance
- Set scope trigger to "Free Run"
- Hardware acceleration gathers massive amounts of measurement data in seconds
- Minimal blind time ensures capture of slow drift as well as spurious impairment to power rail

WINDOW TRIGGER & HISTORY

- Set Window-Exit trigger to find rare disturbance to power rail
- History mode to "play back" each timestamped violation
- Use Gated-FFT to understand harmonics on power rail at specific times

		a	Trigger Window 3.23 V	Horizontal Norm 10 µs/ 10 GSa/s	Acquisition s Sample
3.247V Diagram1: C1 ×		Y	Enter 3.22 V	Stop 0 s 1 Mpts	Hist 16
ProbeMeter 1 _ X					
3.228 V			11		
Copy to offset				i de chididad d	
🗘 12277					1
3.223 V Available acqs 16			Trigger		
2299 Current acq -2 Time -937,999665502 ms				Trigger on	
Auto repeat Play >			setup	Single event *	
- 3211 V	-20µi -10µ	- 	Mode / Holdoff	Туре	
Diagram2: M1 ×			Conditioning	Window *	Vertical condition
26.19 dBm	-37.34 dBm		Action	C1 Channel 1 🔹	Exit
			Qualify	Upper level	
			Quality	3.2304289 V	Find leve
				Lower level	
C1 M1	со водна составляется выдна составляется данн	24 CH1 28 CH1			
4 mV/ pc 10 dB/					
3.23 V 50 Ω FFTmag(C1) 2 GHz RT-ZPR20 RBW: 40 MHz 25 dBm					

99

FREQUENCY ZONE TRIGGER

- Use zone trigger to isolate impairments to power rail base on frequency
- Correlate time and frequency
- History mode to "play back" each timestamped violation

- 1. Use a scope with low noise
- 2. Adjust vertical scale to most sensitive setting (noise reduction)
- 3. Apply bandwidth limit filters (noise reduction)
- 4. Use a power rail probe (offset + noise reduction + excellent DC loading)
 - During design, consider how you are going to probe your prototype
 - Browser (more noise, lower BW)
 - SMA (low noise, easy access)
 - Across a bypass cap (SMA coax with pigtail solder accessory)

85 ·	106	Rohde &	Schwarz
------	-----	---------	---------

Digital Test: Power Integrity Fundamentals

