DIGITAL WE DAYS 2023

OPTICAL MULTI-GIGABIT LINKS FOR AUTOMOTIVE

Partnered with KDPOF

WURTH ELEKTRONIK MORE THAN YOU EXPECT

TODAY'S SPEAKERS

PRESENTATION Óscar Ciordia Marketing and Sales Director **MODERATION** Markus Eberle Marketing Department

INFORMATION ABOUT THE WEBINAR

You are muted during the webinar.

However, you can ask us questions using the chat function.

Duration of the presentation30 MinQ&A:10 - 15 Min

Any questions? No problem! Email us

digital-we-days@we-online.com

Please help us to optimize our webinars!

We are looking forward to your feedback.

On our channel And on Würth Elektronik Group Digital WE Days 2023 YouTube Playlist

Automotive Optical Multi-gigabit October 2023

www.kdpof.com

Index

Company Presentation

Automotive Optical Multi-gigabit

Timeline

- Head Quarters
 - Madrid (Spain)
- Other locations
 - France
 - Valencia (Spain)
- Commercial offices
 - Sweden
 - Germany
 - Japan
 - Korea
 - GC

CONFIDENTIAL

KDPOF actively participated in standardization process

- Transceiver
- Transimpedance Amplifier (TIA)
- LED Driver
- FOT (optical front end)
- Wafer fabrication with TSMC and XFAB
- Packaging and testing with ASE
- Main focus Automotive
- Applications in Home and Industrial

Automotive Optical Multi-gigabit (1 Gb/s up to 50 Gb/s)

KDPOF VIEW: History shows copper links migrate into optical as needs grow

CONFIDENTIAL

Current known data rate needs in Automotive application are reaching 100Gbps.m threshold

Sensor	Data Rate (~2030)	Distance (m)	Data x Distance (Gbps.m)
Cameras	10G+	10-15	>100
Radars	10-20Gbps	5 - 10	50 - 200
Displays (4k, 60fps)	10Gbps	5 - 10	50 - 100
Backbone	50G+	5	>250

Source: IEEE802.3cz Task Group meeting presentations

Elaborated from : A. V. Krishnamoorthy et al., "Progress in Low-Power Switched Optical Interconnects," IEEE J. Select. Topics Quantum Electron., vol. 17, no. 2, pp. 357–376, Mar. 2011

10²

COPPER TRANSMISSION CAN EVOLVE, BUT NOT WITHOUT SIGNIFICANT CHALLENGES

	Technical Approach		
	Add more (parallel) lanes	 Cost and weight Connection size i Decreased mecha 	
	Larger conductors (& shielding)		
corning Inc.	Increase DSP complexity (equalization, FEC, etc.)	Higher power corIncreased latency	
* Source: C	Higher signal amplitude	Higher power corIncreased EMC is	

CONFIDENTIAL

Associated issues of cables increase nanical flexibility

nsumption

/

nsumption

sues

Data links support autonomous and electric vehicles

https://www.designnews.com/automotive-engineering/why-cars-are-migrating-zonal-electric-architecture

Exponential increase of the electronics complexity and speed

- Connected cars
- Electrical and autonomous vehicles
- High-speed cameras and sensors (radar, lidar...)
- Centralized high performance computing units processing all raw data
- Zonal architecture, sensor fussion
- Black-boxes

Automotive requirements for any link technology

• <10 FIT over 15 years of life-time

- According to the new AEC-Q102-003 standard Operation ambient temperature (grade 2): -40 °C ~ +105 °C
- IC (package, pitch, SMD...)
- Connector housing (two-step assembly, waterproof, environmental...)
- Connector-IC mating (manufacture & assembly tolerances)
- Bending: permanent, instant, dynamic, micro-bending
- Vibration, shock test, mechanical loads
- Chemical loads
- Optical parameters (emission profile, wavelength, spectral width, AOP...)
- Electrical parameters (electrical model, linearity, bandwidth...) Performance: 40 m – 4 IC

- Published in 2023
- Ethernet PHYs specification targeted for Automotive application
 - Support of data rates of 2.5, 5, 10, 25 and 50 Gb/s (single lane) Ο
 - Support for implementations qualified AEC-Q100 grade 2 (operation T_J & T_{BS} -40°C to 125°C) Ο
 - Support of max reach of **40 meter** (cars, buses, trucks) Ο
 - Support for low-cost, small-size, auto-grade optical connectors (up to 4 inline connections) and cables Ο
 - Support for advance diagnosis, wake-up & sleep functions, dependability function with OAM channel Ο
 - Support for Energy Efficient Ethernet (EEE) for big power saving in low traffic conditions, asymmetric rate use cases Ο

• Leverage mature components from other industries: OM3, VCSELs and photo-diodes

Optical: simplicity makes it the optimal solution

Optical transceiver does NOT have to compensate:

High attenuation vs frequencyAgeing

Optical transceiver's electronics are much simpler

- Smaller silicon area Shorter latency Lower power consumption
- Cheaper

Optical vs Copper tranceiver comparison

Optical PHY

Single-lane max. rate	50 Gb/s according to 802.3cz. 100 Gb/s feasible
Supported max channel length	> 40 meters for at least up to 50 Gb/s
Supported # inline connections	At least 4 for rates <= 25 Gb/s. At least 2 for rates >= 50
Scalability	Gb/s Same cables and connectors for rates between 1G and 100 Gb/s
Equalizer complexity	FFE + DFE: < 10 taps total
Echo cancelling	Νο
FEC complexity	RS-FEC (544,522), GF(2 ¹⁰). Complexity FOM = $m \cdot (n-k) = 220$
Block inter-leaver for impulse noise	Νο
Latency	10GBASE-AU is 1.1 us 25GBASE-AU is 0.45 us 50GBASE-AU is 0.23 us
Start-up time	< 100 ms (shorter in optical as no master/slave config is needed)
Modulation complexity	NRZ for <= 25 Gb/s. Low linearity analog circuits. Low ENOB A/D. PAM4 for 50 Gb/s
Power consumption	Lower, based on complexity
Connectors cost	Lower: simple housing + ferrules
PCB integration	PHY IC placed close to the ECU edge PHY IC in the middle of the ECU close to uP/GPU/sensor/switch Port PCB area: ~ 22 x 16 mm ²
BOM	PDN passives, optical connector
EMC cost	Much lower
	CONFIDENTIAL

Copper PHY

25 Gb/s according to 802.3cy. < 11 meters Max. 2 for rates >= 2.5 Gb/s Cable and connector categories depend on data-rate 100's of taps needed 100's of taps needed <=10Gb/s: RS (360,326), GF(2¹⁰). FOM = $m \cdot (n-k) = 340 (> +50\%)$ 25Gb/s: RS-FEC (936,846), GF(2¹⁰). FOM = $m \cdot (n-k) = 900 (> x4.5)$ x4 necessary for 10 Gb/s. x8 be necessary for 25 Gb/s. Complexity scales quadratically with data-rate

10GBASE-T1 with 4x interleaved is **2.0 us** (+80%) 25GBASE-T1 with 8x interleaved is **4.1 us** (x9)

< 100 ms

PAM4 for <= 25 Gb/s. High linearity and resolution D/A & A/D

Higher, based on complexity

Higher: metal shielding

PHY IC needs to be placed **close to the ECU edge**, close to MDI with **critical layout** Port PCB area: ~50 x 20 mm²

PDN, EMI filter, ESD protection, CMC, DC block electrical connection

Very high: most problems come up at vehicle level

Packaging for the optical transceiver

IC Stand-alone transceiver with full integration of electronics over a common substrate with photonics (PD & VCSEL), and a lid integrating optics for optical coupling and alignment with fiber ferrules and EMC shielding. The component will support

standard reflow assembly process.

CONFIDENTIAL

IC with kapton tape to cover the two

IC with fiber ferrules inserted on

This is done after package is

mounted on the PCB

2-to-1 CSI-2 / SerDes / Optical PHY MUX

Port size comparison

BCM89890, 8x8 mm, BGA-81

Camera and radar solution

- MIPI operation:
 - CSI-2 to CSI-2
 - CSI-2 to Ethernet with IEEE 1722/MIPI encapsulation
- I2C, SPI and GPIO support over IEEE 1722
- Multiple CSI-2 channels over a single duplex fibre
- Asymmetric optical operation:
 - Up to 12.5 Gb/s downstream
 - 1 Gb/s upstream
- 90° or 180° connectors
- Power supply over hybrid connectors and cables already prototyped
- Several TIER-1 and OEM interested; PoC available

Mated Camera connector

Satellite radar PoC

CONFIDENTIAL

• 2 or 4 FMCW radar transceivers per sensor ECU (e.g.

• 4-lane CSI-2 port per transceiver, 600 Mb/s per lane

 $2 \times 4 \times 600 = 4800$ Mb/s (rear sensors and front corners) $4 \times 4 \times 600 = 9600$ Mb/s (front sensor)

 Radar application is intensive in number of lanes and ports to get aggregated rate

- transmission
- Gb/s

CONFIDENTIAL

• Up to 10 cameras in high-end platforms with raw-data

• Most of the cameras are ~3 Gb/s, some of them are ~8

• # CSI-2 ports per SOC limited, max 4 (e.g. Xavier, Renesas): virtual CSI-2 channels over single CSI-2 port are used • Dual and quad deserializers are currently used with coax and A-PHY

> • Camera application is intensive in rate per lane with low number of lanes and ports

EVB7251AUT_block_diagram__1v0.sv

Availability September 2023

Optical Multi-gigabit Road Map

• PHY vendors

• Connector and cables

• Test tools KEYSIGHT VECTOR

• Test houses

• Interested TIER-1 and OEMs (Some with actual projects)

cruise

in y D www.kdpof.com

 Ronda de Poniente 14, 2CD, 28760, Tres Cantos, Madrid, Spain.
 +34 918 043 387

Thank you!

We are here for you now! Ask us directly via our chat or via E-Mail.

digital-we-days@we-online.com o.ciordia@kdpof.com

Backup slides

980nm, ER 4dB, 125°C, 40m OM3

53.76 Gb/s PAM4

26.88 Gb/s NRZ
 No.
 No.
 No.
 No.
 No.
 No.

 Image: Second and the second and

53.76 Gb/s PAM4

980nm, ER 3dB, -40°C, 40m OM3

26.88 Gb/s NRZ

- Integration of >=10 Gb/s copper PHYs in switch will be complicated
- Optical transceiver will always be in the connector
 - Middle of the board and edge connector options possible
- Integration of PCS & PMA in switch no sense
- Different electrical interfaces to support connection to switch
- Multiple port transceivers is the most probable way of integration. High density connectors
- In collaboration with switch IC suppliers to agree on interfaces

Multi-Gigabit Optical Automotive ICs

900 um Tight Buffered Fiber → Typical Interconnect Cable

Optical cable is smaller/lighter for multi-gigabit

- Electrical communications cable (copper)
 - Insulated to avoid short circuits
 - Conductor pairs to balance signals and minimize cross-talk Ο
 - Shielded to minimize EMC/EMI
 - \circ Increase in data rate \rightarrow shield (EMI), dielectric layer (x-tak) \rightarrow more specific
- **Glass Optical Fibre Cable** ullet
 - Plastic sheets to protect fiber mechanical and environmental factors (i.e.125°C)
 - Aramid standards for tensile strength (>200N)
 - No need for EMI shielding
 - \circ Increase in data rates \rightarrow cable size unchanged from 1Gbps up to 100 Gbps.

	1000BASE T1	Optical Cables
"Conductor"	2x AWG26 Cu	2x 125/50 µm Glass
Diameter	4.3 mm	4x2 mm
Weight	23.2 g/m	7.4 g/m
n. Bend Radius	21 mm	15 mm
Data rate	≤1 Gbps	100+ Gbps

Mi

Optical fiber systems can scale to higher data rates w/ same cable design

	Max. Speed	Complexity*	Distance	11/	-11
CAT 3	0.01 Gbps	•	100 m		
CAT 5	0.1 Gbps	••	100 m		
CAT 5e	1 Gbps	••	100 m	CAT 5	C
CAT 6	1 Gbps	•••	100 m	(Ø5.5mm)	(0)
CAT 7	10 Gbps	••••	100 m	10.2mm)	Ö A
CAT 8	40 Gbps	••••	(30 m)	5.5mm (87
		* shield, twist, et	c.		
			1		
Fiber	Bandwidth	850) nm*		
MM 50µm	2000MHz.km	40G _{SWDM} ; 240 m	n <3.0 dB/km	2 mm	
				4.1	mm 🕨

- Same fiber from 0.01–100 Gbps
- Same Cable/Connector design
- No Shielding Needed

* Source: https://www.corning.com/media/worldwide/global/documents/Optical Fiber Infographic.pdf

Experiments

• Glass optical fibers have been in tension (F=2.6N) for nearly 50 years without breaking (below)

• Environmentally robust fiber cable for challenging applications has been demonstrated

10

Pinch test

Nominal Target = 105°C, Stretch target = 125°C

Glass optical fibers and cables inside thermal aging chamber

Less than 0.05dB change in attenuation after 3000hrs of thermal aging at 150°C

GOF for AUTOMOTIVE: Environm. cycling РС

IEEE802.3cz limit 0.4 Optical performance of the cable is stable after thermal and 0.35 humidity cycling per USCAR-2 testing. Change in insertion Change in Attenuation (dB) loss is <0.02dB. 0.3 0.25 0.2 95% of available budget 0.15 0.1 0.05 0 -0.05 240 336 384 0 144 192 288 Duration (hrs) Duration: 400hrs; Temperature: -40°C to 150°C; 10 Samples

Temp+RH Cycling (-40 to 150C) <0.02 dB

femperature & Humidity Chart

Cyclic bending of glass optical cable around 9mm diameter mandrel

No notable degradation after million bend cycles at 9mm diameter

GOF for AUTOMOTIVE: Chemical loads POI

Chemical Exposure

	Chemical	Exposure
1	Gasoline	60 mins @ 23°C
2	Battery alkaline	1 min @ 23°C
3	Mineral hydraulic oil	60 mins @ 85°C
4	Diesel	60 mins @ 23°C
5	Brake fluid	60 mins @ 85°C
6	Window washer fluid	60 mins @ 50°C
7	Transmission fluid	60 mins @ 85°C
8	Battery Acid	1 min @ 25°C
9	Lubrication fluid	60 mins @ 85°C
10	Antifreeze fluid	1 min @ 23°C

GOF for AUTOMOTIVE: Vibrations Ы

Connector in vibration (random) testing

No notable change in attenuation after "random vibration" testing of the connector

Bend Insensitive Fibers (FIB) for more link margin

BIF adds a layer in the cladding with a lower index of refraction (n) to provide an addition reflection. This guides the light – that would be lost in standard fiber.

CONFIDENTIAL

* Source: https://youtu.be/N_kA8EpCUQo?t=151

Optical cable can be rugged and flexible

- Copper is a ductile material (metal) Low yield stress, 69-365 Mpa • Fatigue (work hardening) and permanent deformation are dislocation-driven once yield stress is exceeded • High bend radius (e.g. 21mm (STP)) • Tight bends increase Loss/x-talk

- Glass optical fibre is a brittle material High intrinsic strength, ~ 5 Gpa Is defected driven, not prone to fatigue
- • • Capable of smaller bend radius (7.5 mm)

GOF CONNECTORS FOR AUTOMOTIVE building on long history

The following diagram is a scale representation of physical contact and expanded beam diameters showing typical contaminant sizes:

Clean Surface	Contaminated	Result
		Dust Particle of $\emptyset = 100 \ \mu m$ can cover the full mission core of the fiber and cleaning is manda
		Dust Particle of $\emptyset = 100 \ \mu m$ covers 3.33 % lens surface and 90 % of the transmission postill given.
	Dust Particle Ø = 100 µm	-

CUNFIDENTIAL

Expanded beam

transatory.

of the ower is

/pe	Multimode
n Loss	Typical 0.7 dB / Connector
	Maximum 1.0 dB / Connector
Loss	N/A
ngths	850 nm / 1300 nm
2	> 10`000 mating cycles
Strength	1`800 N
essive load	50`000 N
g	IP68 (mated and unmated)
Resistance	500 falls onto concrete from 1.2 M height
esistance	4000 bumps @ 40 g acceleration
nal Sinusoidal	10 - 500 Hz, 0.75 amplitude @ 10 g acceleration
tibility	MIL-DTL-83526
bility	UL94 V-0
ature Range	-40° C to +70° C

