

LTspice examples

Frederik Dostal

Power Management Expert

analog.com

Agenda

New in LTspice24

Simulating loop stability

LTpowerCAD for loop analysis

Simulating Tollerances with Monte Carlo

Simulating behavior of a power switch

New in LTspice24

analog.com

LTspice 24 Refresh Overall Look and Feel

©2024 Analog Devices, Inc. All Rights Reserved.

Revert back to classic toolbar style possible

🍠 Settings						×
Netlist Options	Compression	Search	Paths	Inte	emet	Hacks
Operation S	chematic V	Vaveforms	SPIC	E	Save	Defaults
		1	Marching	g Wav	/eforms	
		Generate	e Expan	ded L	isting[*]	
	Save al	open files or	n start of	f simul	lation[*]	
		Automatica	ally delet	e .rav	v files[*]	
Background	image[*]: Os	cilloscope				\sim
	_	> Toolb	oar Style	[*] : [Default	\sim
		Toolbar i	con size	[*]: I	Default	\sim
Way	eform Plotting 1	Thread Priority	y[*]:	mediu	m	\sim
	RAM for Fa	st Access Co	nversior	n[*]:	40%	\sim
Directory for Te	mporary Files[*]					
C:\Users\FDos	tal\AppData\Lo	cal\Temp				
[*] Setting remembered between program invocations.						
	Reset to	o Default Val	ues			
		ОК	Can	cel		Help

Simulation Control

New **Configure Analysis** Toolbar Button and Shortcut ("A")

Improved Configure Analysis Dialog Functionality

- Captures all simulation commands on the schematic, including comments
- Populates tabs accordingly
- Automatically comment/uncomment schematic text

Shift + Left-Click toggles text between directive and comment

LTspice 24: Faster Simulations

- Improved simulation speed
 - Benchmarked ~200 popular MMP examples
 - ADI-standard Dell i7 Precision 5550 laptop
- Improved run-to-run consistency
- Changed default trtol to 2 for further improved performance

New Keyboard Shortcuts and Dynamic Cheat Sheet

Customization-safe

Return to old shortcuts via

Restore LTspice Classic Values

New Non-Modal, Floating Cheat Sheet Available from Help Menu

🕻 Schematic 🔁 Symbol 🏠	🕻 WaveForm 🖹 Ne	etlist		
Configurable Keyboard Shortcu	ts:			
Configure Analysis:	А	Move Mode:	М	
Run/Pause Simulation:	Alt+R	Stretch Mode:	S	
Stop Simulation:	Alt+S	Rotate:	Ctrl+R	
View SPICE Log:	Ctrl+L	Mirror:	Ctrl+E	
Zoom Area:	Z	Delete Mode:	Backspace or Del	
Zoom Out:	Shift+Z	Copy Mode:	Ctrl+C	
Zoom to Fit:	Space	Undo:	Ctrl+Z	
Draw Wire:	W	Redo:	Ctrl+Shift+Z	
Place Ground:	G	Draw Lines:		
Place Voltage Source:	V	Draw Rectangles:		
Place Resistor:	R	Draw Circles:		
Place Capacitor:	С	Draw Arcs:		
Place Inductor:	L	Schematic Grid:	Ctrl+G	
Place Diode:	D	Show/Hide Unconn Pin Marks:	Ctrl+U	
Place Component:	P	Show/Hide Text Anchor Marks:	Ctrl+A	
Place Netname:	N	Reset Sim Waveform T=0:	0	
Place Comment Text:	т	Place BUS Tap:	В	
Place SPICE Directive:	•	Place COM:	Alt+G	
Nonconfigurable Shortcuts:				
Help:	F1	Draw wire at any angle:	Hold Ctrl	
New Schematic:	Ctrl+N	Draw lines off grid:	Hold Ctrl	
Open:	Ctrl+O	Bump cursor (small):	Arrow keys	
Save:	Ctrl+S	Bump cursor (medium):	(Ctrl or Shift)+Arrow	
Print:	Ctrl+P	Bump cursor (large):	Ctrl+Shift+Arrow	
Search:	Ctrl+F	Text toggle directive/comment:	Shift+Left-Click	
Renumber instances:	Alt+Ctrl+Shift+R	Direct edit text/attributes:	Ctrl+Right-Click	
Highlight hidden text:	Alt+Ctrl+Shift+H			

	9	Undo	Ctrl+Z
	C	Redo	Ctrl+Shift+Z
	Aa	Iext	Alt+T
	.op	SPICE Directive	Alt+S
		SPICE Analysis	
	\leq	Resistor	Alt+R
	÷	Capacitor	Alt+C
,	3	Inductor	Alt+L
	\Rightarrow	Diode	'D'
	Ð	⊆omponent	Ctrl+V
	Êm	Rotate	'R'
	Ê	Mirror	'M'
	2	Draw <u>W</u> ire	Ctrl+W
	φ	Label <u>N</u> et	'Nʻ
	\uparrow	Place GND	Alt+G
		Place BUS tap	'B'
	δ.	Delete	Backspace
		Duplicate	Ctrl+C
	Ð	Move	Ctrl+M
	\mathfrak{O}	Drag	Ctrl+D
	Ē	Paste	Ctrl+V
		Draw	

Frequency Response Analysis (FRA) Upgrades

4-terminal Frequency Response Analyzer Probe

- Enables Bode plots of any part the loop
- Simplifies analysis of µModules with integrated top feedback resistors; negative outputs; and current feedback

Phase changed to represent phase margin (phase +180°)

Smooth stimuli transitions between frequencies

• Faster settling / improved accuracy

 40mV
 V(ouffb)

 32mV 24mV

 24mV 16mV

 8mV 0mV

 -8mV -16mV

 -16mV -24mV

 -24mV -32mV

 -32mV -40mV

 -48mV -6.39ms
 6.48ms

 6.39ms
 6.48ms
 6.57ms
 6.84ms
 6.93ms
 7.02ms
 7.11ms
 7.20ms
 7.29ms
 7.38ms

&1

Component Libraries and AppData

©2024 Analog Devices, Inc. All Rights Reserved

Components / Software may be separately updated New since Ver. 24.

Update LTspice

Simulating loop stability

analog.com

How to measure loop stability?

Practical Implementation

Practical Implementation

Bode Plot

Mag (B/A) (dB)

Phase (B-A) (deg)

The Bode Diagram

Phase margin is Phase at the frequency of OdB crossover

OdB crossover goal 1/5th, 1/10th of switching frequency

Phase margin goal is > 45 deg

Bode Plot in old LTspice

.measure Aavg avg V(a) .measure Bavg avg V(b) .measure Are avg (V(a)-Aavg)*cos(360*time*Freq) .measure Aim avg -(V(a)-Aavg)*sin(360*time*Freq) .measure Bre avg (V(b)-Bavg)*cos(360*time*Freq) .measure Bim avg -(V(b)-Bavg)*sin(360*time*Freq) .measure GainMag param 20*log10(hypot(Are,Aim) / hypot(Bre,Bim)) .measure GainPhi param mod(atan2(Aim, Are) - atan2(Bim, Bre)+180,360)-180

> .param t0=.2m .tran 0 {t0+25/freq} {t0}

.step oct param freq 5K 500K 5
.save V(a) V(b)
.option plotwinsize=0 numdgt=15

Stability Analysis, Small Signal

Power Supply: Input = Output = O

Principle of Superposition

©2024 Analog Devices, Inc. All Rights Reserved.

¢ã☆∐≜≑▶∎Ⅲ⊟≣QQQŨ≦l÷3‡Ž¤ttO√∛∛?⊘⋈♠∥Q

✿ 51 ☎ 🖶 ☎ ▷ ■ 🗓 🖻 등 육 육 육 健 🗃 ጌ 수 🛛 💈 ‡ 3 幸 🗵 🚥 t t ೮ 🖓 🖓 🖓 🦘 📌 🔍

5018		Top Directory:			
h Efficiency 65V/100m k	A Synchronou	IS C:\Users\FDos	stal \AppData \Local \LT	spice \ib \sym	
		Search: It861	.8		Go to analog.com
Vin	BST	C:\Users\	FDostal\AppData\Loc	al \LTspice \lib \sym \Po	werProducts\
		LT8361	LT8410-1	LT8604	LT8613
EN/UV	SW	LT8362	LT8415	LT8604C	LT8614
		LT8364	LT8418	LT8606	LT8616
		LT8365	LT8471	LT8607	LT8618
INTVCC	Bias	LT8374	LT8494	LT8608	LT8618-3.3
		LT8374-1	LT8495	LT8608S	LT8618C
		LT8376	LT8550	LT8609	LT8619
	FB	LT8386	LT8551	LT8609A	LT8619-5
		LT8390	LT8570	LT8609B	LT8620
		LT8390A	LT8570-1	LT8609S	LT8630
TR/SS		LT8391	LT8580	LT8610	LT8631
		LT8391A	LT8582	LT8610A	LT8636
		LT8391D	LT8584	LT8610AB	LT8637
Rt	PG	LT8392	LT8601	LT8610AC	LT8638S
GND		LT8393	LT8602	LT8611	LT8640
o		LT8410	LT8603	LT8612	LT8640-1
Get LT8618	Info	<			

🗘 🚮 🗁 💾 🚔 🌣 🕨 🔳 🔟 🚍 🔁 🗨 🔍 🐼 🐷 👢 🕹 🗇 🛊 学 3 💠 💆 🚥 t 🛨 😋 🖑 🖓 🐼 🦛 🤷 🔍

✿ 👌 🗁 💾 🚔 🌣 ▷ 🔳 🔟 🚍 🔁 Q, Q, Q, 🕑 🎯 💈 ÷ 3 字 💆 📫 t t O 🖓 🖓 🖓 🖄 🦘 🏓 Q,

– 0 × _ 8 ×

✿ 👌 📅 💾 🚔 🏟 ▷ 🔳 🔟 🚍 🔁 Q, Q, Q, 🕑 🌋 🐍 🕹 🕸 🛊 🖇 🕸 💆 🛄 t. t. O 🖓 🖓 🖓 🖗 Q,

🌣 👌 🗁 💾 🚔 🏟 🕨 🔳 🔟 🚍 🔁 🗨 🔍 🐼 🐷 🐍 🕹 🗇 🛊 学 3 字 💆 🚥 t 🛨 😋 🖓 🖓 🐼 ♠ 🖉 🍳

Settings

©2024 Analog Devices, Inc. All Rights Reserved.

✿ 👌 🗁 💾 🚔 🗭 🖿 🔟 🚍 🗟 Q, Q, Q, 23 😂 7. 🔶 ② 💈 ≑ 3 💠 25 唑 t 🛨 3 🖓 🖓 🖓 🖓 🔷 Q

🔨 LT8618 🔛 LT8618

🌣 👌 📅 💾 🚔 🌣 ▷ 🔳 🔟 🚍 🗣 Q, Q, 🕑 🕸 💪 🔶 🗇 🛊 ≑ 3 字 💆 📫 t t 🕴 🖓 🖓 🐼 🍬 🔶 Q,

o ×

_ 8 ×

✿ 🚮 🗗 💾 🚔 ✿ ▷ 🔲 🔟 🚍 🖶 욕 욕 욕 ֎ 🔛 🕸 ጊ 수 🍭 🛊 🗦 3 🌣 🍱 😐 t t 🕄 🖓 🦓 🖓 🖓 🏘 🧶 욕

Start drafting a new schematic

✿ 👌 📅 💾 🚔 🏟 ▷ 🔳 🔟 🚍 🗣 Q, Q, 🕑 🥸 👢 수 🍥 💲 ≑ 3 💠 💆 😐 t t O 🛹 🖓 🖓 🖄 🦘 🥔 Q,

🔛 LT8618 🍕 LT8618

Right click to edit ".tran 3m steady nodiscard"

✿ 👌 🗁 💾 🚔 ♥ ▶ ■ 🔟 🚍 🗟 Q, Q, Q? 28 🕄 2, 수 ③ 💈 ≑ 3 💠 28 🔤 t 🛨 C3 🖓 🖓 29 🖂 �, � � Q,

LT8618 (Buck)

ANALOG DEVICES

Run Time 14.7s (On 5 Years Old Intel Core i 97920X)

©2024 Analog Devices, Inc. All Rights Reserved.

LT8618 (Buck)

100mA Synchronous Buck, $f_{SW} = 400$ kHz, $V_{OUT} = 5$ V

Run Time 9min 12s

©2024 Analog Devices, Inc. All Rights Reserved.

LT8618 (Buck)

Stimulus Too Small

FAIL

Break the Loop

Criteria

- Interrupt all feedback paths
- FRA component must be point from lower impedance (flat side) to higher impedance (pointy side)

This requires engineering

- LTspice does not know the correct placement
- Many circuits have multiple places where the loop can be broken—if in doubt, try two places and compare the results (adjust the stimulus amplitude appropriately)

Inspect the FRA transient waveforms

Voltage at both FRA terminals, and the difference

Inductor current

Control voltage (if external)

Inspect the FRA transient waveforms

Ideally, sinusoidal pattern should be evident and symmetric

- Look for signs of non-linearity, which would indicate stimulus amplitude too large
- Note that there are discontinuities when the frequency changes these are expected

ANALOG DEVICES

Connect the positive (0+, I+) terminals of the **fraprobe** across the **fra stimulus device**, negative fraprobe terminals (O-, I-) to the negative output

LTspice detects that the stimulus is grounded and automatically plots the **probe** gain

©2024 Analog Devices, Inc. All Rights Reserved

Analyzing µModules with Internal Feedback

Many µModules have integrated feedback components

 \rightarrow There is no way to break the loop outside the module!

LTM8074 Block Diagram

Analyzing µModules with Internal Feedback

- Solution: Replicate the feedback divider, including the internal components
- Configure the analyzer device to stimulate the main loop
- Connect the fraprobe to analyze the loop gain

▶ LTspice detects that the stimulus is grounded and automatically plots the probe gain

Current Feedback and Partial Loop Analysis

ANALOG DEVICES

©2024 Analog Devices, Inc. All Rights Reserved

Example: Stepping A Parameter

Easily Plot Phase And Gain Margin

Image: SPICE Error Log: fra_LT8648S.log >					
Measurement: PhaseMargin 1					
step		PhaseMargin	at		
	1	47.0836°	46010.9		
	2	73.9102°	206029		
	3	48.0784°	234740		
Measurement: GainMargin_1					
step		GainMargin	at		
	1	30.7318dB	725478		
	2	11.6137dB	582070		
	3	8.96924dB	590198		
Dat	<u>F</u> ind	Ctrl+F			
Tot: Plot .step'ed .meas data seconds .					
tnoi 🔀	Close	3		~	
< 🛄	_			>:	

LTpowerCAD for loop analysis

analog.com

LTpowerCAD in the center

Selecting external components

TpowerCAD II V2.7.1

©2024 Analog Devices, Inc. All Rights Reserved.

Feedback Loop & Transient Designs

ITpowerCAD II V2.7.1 - Seminar_01.ltpc

©2024 Analog Devices, Inc. All Rights Reserved

Efficiency Optimization

ITpowerCAD II V2.7.1 - Seminar_01.ltpc

– 0 ×

ANALOG DEVICES

Designing an output filter

🚰 LTpowerCAD II V2.7.1 - LTC71515 Demo Board DC2615A.ltpc

ANALOG DEVICES

10

×

©2024 Analog Devices, Inc. All Rights Reserved.

Frequency (Hz)

Update

– 0 ×

Export EMI Data

LISN...Line Impedance Stabilization Network

Simulating Tollerances with Monte Carlo

analog.com

Monte Carlo Simulations: Statistical Functions

LTspice provides several statistical functions

flat(x)	Random number between –x and x with uniform distribution
gauss(x)	Random number from Gaussian distribution with sigma of x.
mc(x,y)	A random number between x*(1+y) and x*(1-y) with uniform distribution.
rand(x)	Random number between 0 and 1 depending on the integer value of x.
random(x)	Similar to rand(), but smoothly transitions between values.

Most popular for Monte Carlo simulations:

- mc(x,y) for device parameters with target values not equal to zero
 - R, C, V, ...
- flat(x) for parameters which are ideally 0
 - offset

✿ 👌 🔂 💾 🚔 🏟 ▷ 🔳 🔟 🚍 🗟 Q Q Q 🕑 🌋 L 🕹 🍥 💲 ≑ 3 💠 💆 📫 t 🛨 🖸 🖓 🖓 🐼 🦘 🥔 Q

✿ 👌 📅 💾 🚔 🍄 ▷ 🔳 🔟 🚍 🔁 Q, Q, Q, 🕑 🌋 🐍 🕹 🗇 🛊 🗦 3 💠 🍱 🐮 t t O 🛹 🖓 🖓 🖄 🆘 🥔 Q,

✿ 👌 🔂 💾 🚔 � ▷ 🔲 🔟 🚍 🖶 Q, Q, Q, 🕑 🥸 ጊ, 수 ② 💈 ≑ 3 字 💆 🛤 t 🛨 O 🖓 🖓 🖓 🖄 � 🔿 🥥 Q

✿ 👌 🗁 🚔 ♥ ▷ ■ 🔟 🚍 🗟 Q Q Q 🐼 🏖 ጊ 수 🎯 💈 ≑ 3 💠 🖄 🐮 t 🛨 🛇 🖓 🖓 🖓 🕪 � 🏓 Q

LT8648S 🕂 LT8648S 🔛 LT8648S V(out) 5.10V-5.07V 5.04V 5.01V 4.98V-4.95V-4.92V-4.89V 4.86V-4.83V 4.80V-80.5µs 80.9µs 81.0µs 81.1µs 81.3µs 81.5µs 81.8µs 80.6µs 80.7µs 80.8µs 81.2µs 81.4µs 81.6µs 81.7µs 🕻 LT8648S - - X .param rtol 0.01 .step param x 1 15 1 _____С6 _____1µ Vin IntVcc EN/UV Bias U1 BST 17 0.1µ OUT SW {mc(100k, rtol)} LT86485 C2 47µ X2 _____C5 _____10p Rload 333m Sync/Mode FF CLKout Ve R3 {mc(13.7k, rtol)} GND <
 <b Ŷ C3 330p .tran 0.1m startup

Right-Click to manually enter Horizontal Axis Limits

✿ 👌 🗁 💾 🚔 ♥ ▶ ■ 🔟 🚍 🗟 Q Q Q 🐼 🏖 L 🕹 🎯 💈 ≑ 3 🛊 💆 🔤 t 🛨 🛇 🖓 🖓 🖓 🕅 � 🏓 Q

✿ δ) 🗁 💾 🚔 ✿ ▷ 🔲 🔟 🚍 🖶 Q, Q, Q, 🔛 🎯 ጊ, 수 ③ \$ ≑ 3 후 💆 🛤 t t O 🗸 २ २ 🖓 🖓 🖗 🔍 🤷

호 👌 🗁 💾 🚔 🕨 🔲 🔟 🚍 🔁 🗨 🔍 🥸 🎯 🏷 🗇 💈 ÷ 3 ÷ ž 🔤 t ± 🛛 🖓 🖓 🐼 🕪 � 🏓 🍳

Setting LTspice to use real random numbers

ANALOG

Reason for fixed 'random' pattern: While developing a simulation, it is very useful when repeated runs of the simulation behave the same. This way you can compare them and observe the differences resulting from changes YOU made to the schematic or to other parameters.

Simulating behavior of a power switch

analog.com

Analog Devices Confidential Information. ©2019 Analog Devices, Inc. All rights reserved.

Voltage Source Current Limited

Usecase: Simulating output Stages to drive capacitive loads like MOSFETS, IGBTs, SIC

C1=Load

For proper adjustment to a real Gate-Drive you may add a serial resistance to V1.

Voltage Source with Current Limit Bidirectional

Voltage Limiting Bidirectional I-Source

Usecase: Driving Powertransistors (MOSFETS, SIC, IGBT) with large capacitive Gate.

D1, D2 are ideal Diodes C2 is used to prevent high voltage spices on Vn C1 = Load

For proper adjustment to a real Gate-Drive you may add a serial resistance to V1.

Voltage Limiting Current Source

Test Circuit to find minimum Drive-Current

Goal:

We like to determine beyond which drive current there is no further reduction in the power-loss of the MOSFET

Steps to prepare:

- Stepping the drive-current (Ilim)
- 2. Measure Power-Loss
- 3. Plot stepped meas. data
 - 1. Ctrl-L(log-file)
 - 2. Right click: Plot stepped measurement data

Powerdissipation at different Drive Current

Conclusion: Beyond 1A peak drive current, there is no further reduction in Power-loss of the MOSFET.

AHEAD OF WHAT'S POSSIBLE

analog.com

©2024 Analog Devices, Inc. All Rights Reserved.