DIGITAL WE DAYS 2024

<u>INERTIAL MEASUREMENT UNIT (IMU) –</u> <u>A TINY SENSOR SYSTEMS WITH WIDE</u> <u>RANGE OF APPLICATIONS</u>

Kevin Jose & Ninad Mehta

WURTH ELEKTRONIK MORE THAN YOU EXPECT

- IMU: Ineritial Measurement Unit
- Accelerometers & Gyroscopes
 - MEMS technology
 - Working principle
- Applications & use cases
- Motion sensor portfolio from Würth Elektronik
- Added values

Inertial Measurement Unit

IMU – INERTIAL MEASUREMENT UNIT

What is an IMU ?

Inertial Measurement Unit

IMU – INERTIAL MEASUREMENT UNIT

DOF – Degrees of Freedom

More axis we can measure = More accurate orientation of an object in 3D space we can get

WHAT IS ACCELERATION AND ACCELEROMETER?

- Acceleration is the rate of change in velocity.
- SI unit is m/s^2 .

 $a = \frac{\Delta v}{\Delta t}$

- Accelerometer is the sensor used to measure acceleration.
- It usually measures acceleration in gravitational units like 'g' or 'mg'.
- 1 g equals 9.81 m/s^2 , which is the acceleration due to gravity.

WHAT ARE GYROSCOPES?

- Gyroscope is a sensor used to measure angular rotation or angular velocity along a particular axis.
- Unit of measurement degrees per second (dps).

- 3 Types of rotation roll, pitch and yaw
- Several Gyroscope technologies MEMS Gyroscope, Mechanical Gyroscope, Fiber Optic Gyroscopes, etc.
- MEMS Gyroscopes are the most popular.

ACCELEROMETER-DIFFERENT TECHNOLOGIES

	MEMS Capacitive	<u>Piezoelectric</u>	<u>Piezoresistive</u>	<u>Optical</u>
Technology	They measure capacitance between the fixed and movable electrodes to determine acceleration	They generate an electrical charge in response to mechanical deformation caused by acceleration.	They utilize changes in resistance within a semiconductor material due to mechanical stress caused by acceleration	They measure changes in light interference in response to acceleration
Accuracy & Sensitivity				
Power Efficiency				
Cost	€	€€€	€€	€€€€
Size				

8

INERTIAL MEASUREMENT UNIT (IMU) DIGITAL WE DAYS 2024 | KEVIN JOSE, NINAD MEHTA | 24.04.2024

MEMS TECHNOLOGY

Micro-Electro-Mechanical-System

ASIC

Downscaling to micro and nano levels...

- Faster measurement time
- Higher sensitivity

WORKING PRINCIPLE OF MEMS GYROSCOPE

• MEMS Gyroscope consist of a suspended proof mass, a driving system to oscillate the proof mass, and a sensing system.

 Angular rotation in one axis → Coriolis force in a perpendicular axis → Displacement → change in capacitance.

• A tuning fork configuration is used in our MEMS gyroscopes to make the sensor's operation independent of linear accelerations.

TILT DETECTION

Solar trackers

TILT DETECTION

Solar trackers

<u>./-</u>

13 INERTIAL MEASUREMENT UNIT (IMU) DIGITAL WE DAYS 2024 | KEVIN JOSE, NINAD MEHTA | 24.04.2024

TILT DETECTION

How to measure the inclination?

- Accelerometer at rest measures only the acceleration caused due to gravity.
- Ideally, accelerometer placed horizontally should read (0, 0, 1000mg).

- If the sensor is placed in this orientation, then the X and Y axes would show non-zero values and Z axis would show zero.
- The acceleration due to gravity is resolved in X and Y axes.

X=g*sin(θ) Y=g*cos(θ)

• The inclination, θ , can be easily calculated from solving these equations.

DYNAMIC TILT MEASUREMENT

- Accelerometer for tilt/rotation measurement is not enough...
 - Do not work for moving objects
 - Tilt/rotation cannot be measured at all 3 axis simultaneously
 - Drift over time

ASSET TRACKING & INDOOR POSITIONING

- GNSS alone cannot provide accurate information of an asset especially in conditions like indoor or tunnels.
- In such cases GNSS data can be combined with accelerometer and gyroscope data to understand the exact location and heading of an object.

ASSET TRACKING & INDOOR POSITIONING

MORE APPLICATIONS

- Predictive maintanance
- Track 6-D orientation

- Real time monitoring at higher data rates
- Battery operated

- Track 6-D orientation
- Detect free fall
- Battery operated

3 AXIS ACCELERATION SENSOR

WSEN-ITDS from Würth Elektronik

- MEMS Capacitive sensing principle
- Outputs acceleration in X,Y and Z axis
- 14-bit Digital output
- Small size 2mm*2mm*0.7mm
- I2C and SPI communication
- Two independent interrupt pins
- Operating temperature, -40° C to +85° C

6 AXIS IMU: ACCELEROMETER & GYROSCOPE

WSEN-ISDS from Würth Elektronik

- MEMS capacitive sensing
- 3-Axis Accelerometer + 3-Axis Gyroscope combined
- 16-bit digital output
- Small size 3mm * 2.5mm * 0.86mm
- Two programmable interrupt pins
- I²C and SPI communication interface
- 4 Kb FIFO memory
- Operating temperature, -40° C to +85° C

BLOCK DIAGRAM

KEY SPECIFICATIONS

	WSEN-ITDS	WSEN-ISDS
Full scale	±2g, ±4g, ±8g, ±16g	Accelerometer - ±2g, ±4g, ±8g, ±16g Gyroscope - ±250 dps, ±500 dps, ±1000 dps, ±2000 dps
Output data rate	1.6Hz to 1600Hz	1.6Hz to 6664Hz
Offset	±30mg	Accelerometer - ±40mg Gyroscope - ±2000mdps
Noise density	90 μg /√ <i>Hz</i>	Accelerometer− 70 µg /√ <i>Hz</i> Gyroscope− 3.8 mdps/√ <i>Hz</i>
Power consumption	16 - 155 μA	280 - 694 µA

MORE THAN YOU EXPECT

Accelerate your Project with the added resources...

Evaluation boards

Sensor feather wing

Sensor Shield for Arduino

Any other Microcontroller

Altıum

Designer

Application Notes

Software Davelopment kit

SOFTWARE DEVELOPMENT KIT

We are here for you now! Ask us directly via our chat or via E-Mail.

digital-we-days@we-online.com wcs@we-online.com

