

AUSWAHL VON SPEICHERDROSSELN

Raphael Specht Field Application Engineer

WURTH ELEKTRONIK MORE THAN YOU EXPECT

<u>Agenda</u>

- Kernmaterialien
- Geometrie und Luftspalt
- Sättigungs- und Nennstrom
- Frequenzverhalten
- Verluste
- Streufeld
- Auswahl einer Speicherdrossel

Begriffsklärung

Was ist eine Induktivität? Was ist eine Spule?

- ...technisch gesehen:
- ein gewickeltes Stück Draht

Anwendung als:

- Filterelement
- (Kurzzeit-)Energiespeicher

Unterschied zwischen Spule und Induktivität?

- Spule -> Bauform
- Induktivität -> physikalische Größe

KERNMATERIALIEN

Das Magnetfeld

Magnetische Feldstärke

Rechte-Hand-Regel Strom I Magnetfeld H

jeder Stromdurchflossene Leiter erzeugt ein Magnetfeld

Magnetisches Feld

Vergleich verschiedener Geometrien

Die magnetische Feldstärke ist abhängig von:

- Geometrie,
- Windungszahl,
- Stromstärke,

aber nicht vom Material!

Die relative Permeabilität und Anfangspermeabilität

- Iat.: permeare = durchgehen', passieren'
- beschreibt die Fähigkeit, den magnetischen Fluss im Kernmaterial zu konzentrieren bzw.
- ist ein Faktor zur Bestimmung des Energieaufwandes für die Magnetisierung.

 $\mu = \frac{1}{\mu_0} \frac{\Delta B}{\Delta H}$

Ferritmaterial

- Ungeordnet
- weichmagnetisch

Dauermagnet

- Geordnet
- hartmagnetisch

Magnetische Flussdichte

$$B = \mu_0 \cdot H$$

 \rightarrow lineare Funktion

Kernmaterialien – Vergleich der Hysterese-Kurve

NiZn Nickel Zink

Materialzusammensetzung

<u>Vergleich Eisen / Ferrit</u>

	Ferritmaterial	Eisenpulver	
Material	Fe2O3, Zn, Ni / Mn	Fe (99%), Si, Al	
μ	NiZn: 40 ~ 1500	20 ~ 150	
	MnZn: 300~ 20k		
B _{sat}	NiZn: 0,1 – 0,3 T	<1,5T	
	MnZn: 0,2 – 0,5 T		
R	NiZn: mehrere MΩ/cm	5-10 Ω/cm	
	MnZn: mehrere kΩ/cm		
T _{Curie}	100460°C	768°C	

Carbonyleisenpulver (CIP)

- Ausgangsmaterial: **Eisenpentacarbonyl** Fe(CO)₅
- Nach Reduktion entsteht reines Eisen mit sphärischer Partikelform (einige µm im Durchmesser).
- Großtechnische Produktion durch BASF seit 1924
- Sphärische Partikelform erlaubt **hohe Packungsdichte**
- Isolationsschicht (FePO₄, SiO₂) auf den Partikeln wirkt als Wirbelstrombarriere → Sehr geringe Kernverluste
- Bindemittel für den Zusammenhalt
- Konstante Permeabilität bis zu einigen MHz
- Sättigungsflussdichte: >1T

Quelle: BASF – The Chemical Company, 2012

Impedanz einer Ringspule mit Ferritkern

Impedanz einer Ringspule mit Ferritkern

Induktivität einer Ringspule mit rechteckförmigem Querschnitt

$$L_{0} = \mu_{0} * N^{2} * \frac{h}{2\pi} * ln\left(\frac{r_{außen}}{r_{innen}}\right)$$

- Resistiver Anteil der Impedanz $R(f) = 2\pi * f * \mu''(f) * L_0$
- Induktiver Anteil der Impedanz $X_L(f) = 2\pi * f * \mu'(f) * L_0$
- Kapazitiver Anteil der Impedanz

Abnahme der Impedanz oberhalb des Resonanzmaximums

Frequenzabhängigkeit

$$\overline{\mu} = \mu' - j \mu''$$

$$\overline{Z} = j \omega L_0 * (\mu' - j \mu'')$$

$$\overline{Z} = R + j X_L$$

$$X_L = \omega L_0 \mu'$$
Frequenzabhängiger
Magnetisierungsanteil

 $R = \omega L_0 \mu''$ Frequenzabhängiger Verlustanteil

Magnetisierungsanteil

Frequenz

Verlustanteil

Frequenz [MHz]

<u>GEOMETRIE UND</u> <u>LUFTSPALT</u>

Effekt des Luftspaltes auf die Induktivität

• Mit einem größeren Luftspalt sinkt die effektive relative Permeabilität des Kerns...

$$\mu_{\rm r,e} = \frac{1}{\frac{\ell_{\rm e,gap}}{\ell_{\rm e,core}} + \frac{1}{\mu_{\rm r,core}}}$$

• ... und damit auch die Induktivität der Spule

$$L = N^2 \cdot \frac{\mu_0 \cdot \mu_{\rm r,e} \cdot A_{\rm e,core}}{\ell_{\rm e,core}}$$

Effekt des Luftspaltes auf die Induktivität

Der Luftspalt

- verringert die effektive
 Permeabilität des Kerns
- senkt Induktivität
- erlaubt eine Sättigung erst bei höheren Feldstärken
- erhöht das Speichervermögen von magnetischer Energie
- reduziert die Empfindlichkeit gegen DC-Vormagnetisierung

<u>Kernmaterialien – Magnetisierungsenergie</u>

Kerne mit diskretem Luftspalt

Kerne mit diskretem Luftspalt

Kerne mit diskretem Luftspalt

Kerne mit verteiltem Luftspalt

SÄTTIGUNGSSTROM

Wie ist der Sättigungsstrom definiert?

Kein Standard!

<u>Sättigungsstrom</u>

Der Sättigungsstrom ist ein Gleichstrom, der zu einer bestimmten Reduktion der Induktivität führt

Properties		Test conditions	Value	Unit	Tol.
Inductance	L	1 kHz/ 250 mV	33	μH	±20%
Rated Current	ا _R	$\Delta T = 40 \text{ K}$	1.13	А	max.
Saturation Current	I _{SAT}	ΙΔL/LI < 10 %	1.4	А	typ.
DC Resistance	R _{DC}	@ 20 °C	140	mΩ	typ.
DC Resistance	R _{DC}	@ 20 °C	170	mΩ	max.
Self Resonant Frequency			13	MHz	typ.
Operating Voltage			120	۷	max.

<u>Sättigungsstrom</u>

Beispiel

WE-PD 7345, Lnom = 33μ H, Isat = 1,4A, ϑ a = 25° C:

Harte und weiche Sättigung, Luftspalt

Temperaturverhalten der Sättigung

WE-PD - NiZn

Temperaturverhalten der Sättigung

WE-MAPI - CIP

NENNSTROM

Wie ist der Nennstrom definiert?

Kein Standard! (...bisher)

Nennstrom

Der Nennstrom ist ein Gleichstrom, der die Spule zu einer bestimmten Eigenerwärmung treibt

Properties		Test conditions	Value	Unit	Tol.
Inductance	L	1 kHz/ 250 mV	33	μH	±20%
Rated Current	۱ _R	$\Delta T = 40 \text{ K}$	1.13	Α	max.
Saturation Current	I _{SAT}	ΙΔL/LI < 10 %	1.4	Α	typ.
DC Resistance	R _{DC}	@ 20 °C	140	mΩ	typ.
DC Resistance	R _{DC}	@ 20 °C	170	mΩ	max.
Self Resonant Frequency	f _{res}		13	MHz	typ.
Operating Voltage	V		120	V	max.

Temperaturverhalten der Permeabilität

Bei Erreichen der Curie-Temperatur verliert der Ferrit seine ferromagnetischen Eigenschaften

Temperaturverhalten der Induktivität

<u>Nennstrom – Beispiel</u>

<u>Nennstrom – Derating</u>

Vergleich von Datenblättern

Electrical Specifications											General	Specification	s				
Inductan (µH) To		ctance Tol. (%)		Q (Typ.)			Test Freq. (MHz)		Test Freq. (MHz)		SF Ty (MI	RF p. Hz)	RD Ma (m:)C IX. Ω)	l rms Max. (A)	l sat Typ. (A)	**K- Factor
47	.0	±ź	20	2	22	Τ	2.52		7.63		86.0		2.60	2.50	20		
	SRR12	60-2R4Y	2.4	± 3) 10	B	7.96	63.80	11.5	7.80	0.00	100	Resistance	to Soldering I	Heat		
	SRR12	60-3R3Y	3.3	± 3) 2	0	7.96	40.00	12.0	7.60	7.80	74			0.90 for 10 coo		
	SRR12	60-3R5Y	3.5	± 3) 2	2	7.96	37.60	13.0	7.50	7.60	74	Temperatur	e Rise			
	SRR12	60-4R7Y	4.7	± 3	0 19	9	7.96	36.70	15.5	6.80	7.00	65					
	SRR12	60-5R6Y	5.6	± 3) 19	9	7.96	33.00	16.2	6.70	6.90	58	Inductance Drop				
	SRR12	60-6R1Y	6.1	± 3) 2	1	7.96	29.80	17.0	6.60	6.80	58	ESD Classification (HBM)				
	SRR12	60-6R8Y	6.8	± 3) 2		7.96	28.20	18.0	6.30	6.50	53					
	SRR12	60-7R6Y	7.6	± 3) 10	6	7.96	27.90	19.0	6.00	6.20	53					
	SRR12	60-8R2Y	8.2	± 3) 10	в	7.96	24.00	19.5	5.70	5.80	48	Materials	;			
	SRR12	60-100M	10.0	± 2) 3	2	2.52	21.00	20.0	5.50	5.50	44	Core	Fe	rrite DR and RI		
	SRR12	60-120M	12.0	± 2	2	7	2.52	19.40	23.0	5.20	5.00	41	Wire	Ename	led copper wire		
	SRR12	60-150M	15.0	± 2) 2	5	2.52	17.60	27.0	5.00	4.60	36	Terminal		Cu/Ni/Sn		
	SRR12	60-180M	18.0	± 2) 2	3	2.52	15.50	36.0	4.20	3.90	32	Packaging.	6	00 pcs. per reel		
	SRR12	60-220M	22.0	± 2) 2	9	2.52	13.40	43.0	4.00	3.70	30					
	SRR12	60-270M	27.0	± 2) 2	6	2.52	12.70	45.0	3.60	3.30	28					
	SRR12	60-330M	33.0	± 2) 2	7	2.52	9.97	60.0	3.00	2.80	24					
	SRR12	60-390M	DM 20.0 20 20			0.50	10.40	70.0	2.90	0.70	- 22						
	SRR12	60-470M	47.0	± 2) 2	2	2.52	7.63	86.0	2.60	2.50	20					
	SRR12	60-560M	0.00	±Ζ	2	+	2.02	7.92	100.0	2.30	2.20	18					
	SRR12	60-680M	68.0	± 2) 2	2	2.52	7.43	110.0	2.10	2.10	17					

44 AUSWAHL VON SPEICHERDROSSELN MMOE | 24.10.2023

Induc	ctance	Q	Test	SRF	RDC Max	l rms Max	l sat Typ	** K -
(µH)	Tol. (%)	(Тур.)	(MHz)	(MHz)	(mΩ)	(A)	(A)	Factor
47.0	± 20	22	2.52	7.63	86.0	2.60	2.50	20

Electrical Properties:

Properties		Test conditions	Value	Unit	Tol.
Inductance	L	1 kHz/ 250 mV	47	μH	±20%
Rated Current	I _R	$\Delta T = 40 \text{ K}$	2.21	Α	max.
Saturation Current	I _{SAT}	ΙΔL/LI < 10 %	2.6	Α	typ.
DC Resistance	R _{DC}	@ 20 °C	72	mΩ	typ.
DC Resistance	R _{DC}	@ 20 °C	75	mΩ	max.
Self Resonant Frequency	f _{res}		9.2	MHz	typ.
Operating Voltage	۷		120	۷	max.

Greatest Hits

I rated current indicates the current when inductivity drop of 25% max related to the unloaded inductivity or when temperature raise $\Delta T=40^{\circ}C$ (Ta=20°C) whichever is lower

- (1) Open Circuit Inductance Test Parameters: 100KHz, 0.25Vrms, 0.0Adc.
- (2) RMS current for an approximate ∆T of 40°C without core loss. It is recommended that the temperature of the part not exceed 125°C.
- (3) Peak current for approximate 30% roll off at 20°C.
- (4) DCR limits @ 20°C.
- (5) Applied Volt-Time product (V-μS) across the inductor. This value represent the applied V-μS at 100KHz necessary to generate a core loss equal to 10% of the total losses for 40°C

Irms Testing

Irms testing was performed on 0.75 inch wide \times 0.25 inch thick copper traces in still air.

Temperature rise is highly dependent on many factors including pcb land pattern, trace size, and proximity to other components. Therefore temperature rise should be verified in application conditions.

MESSUNG DES NENNSTROMS

Application Note ANP096

Bisherige Situation

Kein Standard

- Unterschiedliche Messmethoden liefern verschiedene Ergebnisse
- Thermische Widerstände beeinflussen das Ergebnis:
 - θ_{WC} Winding to Core
 - Wärmestrahlung
 - Konvektion
 - θ_{WP} Winding to Pad
 - Wärmeleitung
- Die Folge: Die Nennstromwerte verschiedener Hersteller sind nicht vergleichbar

Einfluss der Messmethoden auf die Ergebnisse

Beispiel: WE-LHMI 744 373 460 68 in unterschiedlichen Messaufbauten

Große Messklemmen

- Draht an Induktivität gelötet
- Große Wärmestrahlung und Konvektion in alle Richtungen
- Wärmeleitung an die Klemmen,
- Kühlkörperfunktion
 - 30,9 K @ 3,4 A

Kleine Messklemmen

- Draht an Induktivität gelötet
- Große Wärmestrahlung und Konvektion in alle Richtungen
- Weniger Wärmeleitung an die Klemmen

35,8 K @ 3,4 A

Würth Elektronik Methode

- Induktivität auf Platine gelötet
- Praxisnahe Platinenstärke und Kupferbahnen
- Realistische Wärmeübertragung, vergleichbar mit Standard Layouts
 - 40,0 K @ 3,4 A

Bisheriges Messverfahren

Messanordnung in Anlehnung an EN 60512-5-2 (Steckverbinder)

• Induktivität auf standardisierte Testplatine gelötet

Trace thickness = 35μm FR4 thickness = 1,6mm

- Abgeschlossenes Gehäuse, um Konvektion zu vermeiden
- Aufprägen des Gleichstroms
- Temperaturmessung mittels Wärmebildkamera
- Loggen des Messpunkts bei stabiler Temperatur (Schwankung < 1 K /min)
- Schrittweise Erhöhung bis zur Temperaturgrenze

Neues Verfahren nach IEC 62024-2:2020

Vergleich der alten und neuen Messmethode

Standard PCBs nach IEC 62024-2:2020

Besonderheit PCB Class A

- PCB Class A ist die kleinste Testplatine
- Die Breite des Leiterzugs wird je nach erwartetem Nennstrom angepasst
- Je größer der Strom desto breiter wird auch der Leiterzug in der realen Applikation sein

PCB Class A

Nennstrom	W
lr ≤ 1 A	1 mm
12 A	2 mm
23 A	3 mm
35 A	5 mm
57 A	7 mm
711 A	11 mm
1116 A	16 mm
1622 A	22 mm

Vergleich der alten und neuen Messmethode

Beispiel: WE-LHMI 744 373 460 68 auf unterschiedlichen Test PCBs

Wie finde ich die Information im Datenblatt?

Beispiel: WE-LHMI 744 373 460 68

Electrical	Properties:
------------	-------------

Properties		Test conditions	Value	Unit	Tol.
Inductance	L	100 kHz/ 10 mA	6.8	μH	±20%
Rated Current	I _{R,40K}	$\Delta T = 40 \text{ K}$	3.4	Α	max.
Performance Rated Current	1) I _{RP,40K}	$\Delta T = 40 \text{ K}$	4.45	Α	max.
Saturation Current @ 10%	SAT,10%	ΙΔL/LI < 10 %	5.45	Α	typ.
Saturation Current @ 30%	I _{SAT,30%}	ΙΔL/LI < 30 %	10.6	Α	typ.
DC Resistance	R _{DC}	@ 20 °C	54	mΩ	typ.
DC Resistance	R _{DC}	@ 20 °C	60	mΩ	max.
Self Resonant Frequency	f _{res}		18	MHz	typ.
¹⁾ refer to IEC 62024-2-2020					

General Properties:

Ambient Temperature (referring to ${\rm I_{R}})$	-40 up to +85 °C				
Operating Temperature	-40 up to +125 °C				
Storage Conditions (in original packaging)	< 40 °C;< 75 % RH				
Moisture Sensitivity Level (MSL)	1				
Test conditions of Electrical Properties: +20 °C, 33 % RH if not specified differently					
Test conditions of Performance Rated Current: refer to IEC 62024-2, Class C (PCB Copper Width: 40 mm; PCB Copper Thickness: 105 µm)					
Temperature rise is highly dependent on many factors including PCB land pattern, trace size, and proximity to other components. Therefore, temperature rise should be verified in application					

- Alte und neue Methode im Datenblatt
 - "Rated Current" mit bisherigem WE Verfahren
 - "Performance RC" nach IEC 62024-2:2020
- Testumgebung und entsprechendes PCB werden unter "Test Conditions" vermerkt

Hinweis

- Keines der beiden Verfahren kann die Gegebenheiten in der Applikation 1:1 wiedergeben
- Umliegende Bauteile, tatsächliche Stärke des PCB sowie die Beschaffenheit der Leiterzüge und das Layout sind ausschlaggebend
- Nennstromwerte dienen nur als Anhaltspunkt f
 ür die Auswahl der Speicherinduktivit
 ät

FREQUENZ-VERHALTEN

<u>Eigenresonanzfrequenz</u>

Electrical Properties:

Properties		Test conditions	Value	Unit	Tol.
Inductance	L	1 kHz/ 250 mV	47	μH	±20%
Rated Current	I _R	$\Delta T = 40 \text{ K}$	2.21	Α	max.
Saturation Current	I _{SAT}	IΔL/LI < 10 %	2.6	Α	typ.
DC Resistance	R _{DC}	@ 20 °C	72	mΩ	typ.
DC Resistance	Rpc	@ 20 °C	75	mΩ	max.
Self Resonant Frequency	f _{res}		9.2	MHz	typ.
Operating Voltage	V		120	V	max.

Typical Impedance Characteristics:

<u>Eigenresonanzfrequenz</u>

F2 Typical Impedance Characteristics:

14000

Die SRF sollte 10x größer sein als die Schaltfrequenz Ist das nicht möglich -> Verluste beachten

Gesamtverluste

Gleichstromwiderstand bei gleicher Baugröße

- Größere Induktivität → größerer R_{DC}
- Gleiche Induktivität bei geschirmter Drossel → weniger Windungen → kleinerer R_{DC}
- Der Gleichstromwiderstand bestimmt die Drahtwärmeverluste.

$$P_{\text{total}} = P_{\text{winding}} + P_{\text{core}}$$

- $P_{\text{winding}} \rightarrow \text{Gleich- \& Wechselstromverluste}$
- $P_{\text{core}} \rightarrow \text{Wirbelstrom- \& Hystereseverluste}$

• Ohm'scher Widerstand eines geraden Leiters

$$R_{\rm dc} = \frac{\rho \cdot \ell}{A} = \frac{\ell}{\kappa \cdot A}$$

• Reale Verluste:
$$P_{dc} = R_{dc} \cdot I_{dc}^2$$

 ρ = spezifischer Widerstand ($\rho_{Cu} = 1,786 \cdot 10^{-8} \Omega \cdot m$) κ = spezifischer leitwert ($\kappa_{Cu} = 5,6 \cdot 10^7 \text{ S} \cdot m^{-1}$)

• Leitergeometrie($\ell = 1$ m):

• Eindringtiefe:

$$\delta = \frac{1}{\sqrt{\pi \cdot \mu \cdot \kappa \cdot f}}$$

$$\delta_{Cu}(f = 50 \text{Hz}) = 9,51 \text{mm}$$

$$\delta_{Cu}(f = 1 \text{kHz}) = 2,13 \text{mm}$$

$$\delta_{Cu}(f = 1 \text{MHz}) = 67,25 \mu \text{m}$$

• Die Stromdichte *J* im Leiter in der Tiefe $d = \delta$ hat sich auf $J_s/e = 0,368 \cdot J_s$ reduziert.

Proximity-Effekt

- Magnetfelder benachbarter stromdurchflossener Leiter überlagern sich
- Induktion von Wirbelströmen führt zu ungleichförmiger Stromdichteverteilung im Leiter
- Wicklungsverluste steigen mit der Frequenz und der Anzahl der benachbarten Leiter

• Wie lassen sich die AC Kupferverluste reduzieren?

1. Litzendraht

3,56mm Ø

 $A = 10 \text{ mm}^2$ $u_{\rm flat} \approx 2 \cdot u_{\rm round}$

Kernverluste (AC)

Frequenzabhängigkeit

$$X_L = \omega L_0 \mu'$$

Frequenzabhängiger
Magnetisierungsanteil
 $R = \omega L_0 \mu''$
Frequenzabhängiger Verlustanteil

 $\overline{\mu} = \mu' - j \ \mu''$

 $\overline{Z} = R + j X_L$

 $\overline{Z} = j \omega L_0 * (\mu' - j \mu'')$

Kernverluste (AC)

Ansatz von Steinmetz

 Die Steinmetz-Beziehung gibt die Kernverluste an und wird empirisch mit Ringkernen ermittelt.

•
$$p_{core} = k * f^a * \hat{B}^b$$

$$k = 7,62 \cdot 10^{-14}$$

$$a = 1,325$$

$$b = 2,113$$

Kernverluste (AC)

Ansatz von Steinmetz

- Steinmetz-Parameter sind nur eingeschränkt für reale Speicherinduktivitäten nutzbar.
- Die Genauigkeit ist bei 50% Tastverhältnis am höchsten.
- Eine modifizierte Steinmetz-Beziehung berücksichtigt nichtsinusförmige Anregung:
 - $p_{core} = k * f_{eq}^{a-1} * \hat{B}^b * f$
- Von verschiedenen Kernherstellern gibt es eigene bzw. angepasste Modelle.

- Würth Elektronik nutzt ein spezielles Messgerät (Tiefsetzsteller + Class-D-Verstärker)
 - großer Raum variabler Parameter
- Ermittlung der Spulenverluste durch Messung
 - $P_L = P_{in} P_{out}$
- Arbeitspunkt → dreieckförmiger Stromverlauf

Ansatz von Würth Elektronik

Berücksichtigung von

- realer Kerngeometrie,
- Streufeldeffekten am Luftspalt,
- Wicklungsstruktur,
- Materialmischungen,
- Wechselstromverluste im Draht

Vergleich

Steinmetz Sinusförmige Anregung, nur Kernverluste

WE-Modell Berücksichtigung des Arbeitspunkts, Gesamtverluste

REDEXPERT

Baugröße

Feste Parameter: L = 2,2 μ H; ĪL = 0,5A; Δ IL = 0,2A; fsw = 500kHz; D = 50%

WE-MAPI, WE-MAIA

Baugröße

Feste Parameter: L = 2,2 μ H; ĪL = 0,5A; Δ IL = 0,2A; fsw = 500kHz; D = 50%

WE-PD, WE-PDA

STREUFELD

<u>Streufeld</u>

geschirmt/ ungeschirmt

Streufeld

Simulation

Streufeld

Störspektrum

Ungeschirmte Drossel

AUSWAHL EINER SPEICHERDROSSEL

Abwärtsregler

Auswahl der Speicherdrossel mit REDEXPERT

Abwärtsregler

Auswahl der Speicherdrossel mit REDEXPERT

<u>Abwärtsregler</u>

Bauteiltoleranzen beachten!

Bauteiltoleranz bei der WE-TPC 1038: ±30%

 $L = 22\mu H$ $L = 22\mu H$ $L_{min} = 15,4\mu H$

• Auswirkung auf den Rippelstrom:

$$\Delta I = r * I_{out} = \frac{\left(U_{in,max} - U_{out}\right) * D}{f_{sw} * L_{min}} = 0,79A$$

Magnetisierung der Induktivität im Betrieb

Drossel nicht gesättigt, lineares Verhalten

Magnetisierung der Induktivität im Betrieb

Drossel gesättigt, nichtlineares Verhalten

<u>Abwärtsregler</u>

Spitzenstrom

Arbeitsbereich der Induktivität

