AGENDA

- What is an Inertial Measurement Unit (IMU) sensor
- Block diagram of 6-axis IMU sensor
- Accelerometer
 - Block diagram of Accelerometer
 - Capacitive sensing circuit
- Gyroscope
 - Block diagram of Gyroscope
 - Working principle of Gyroscope: Coriolis Effect
 - Tuning fork configuration and MEMS sensing unit
- IMU Technical parameters and general characterstics
 - Operating modes
 - Embedded functions
 - FIFO buffer configuration
- WSEN-ISDS IMU sensor for IoT/Industrial applications
- Conclusions

WHAT IS AN INERTIAL MEASUREMENT UNIT (IMU) SENSOR

An Inertial Measurement Unit (IMU) is a device that can measure and report **specific gravity/acceleration** and **angular rotational rate** of an object to which it is attached.

An IMU basically typically consists of:

- Accelerometers: providing a measure of specific force/acceleration
- **Gyroscopes:** providing a measure of angular rate
- **Magnetometers (optional):** measurement of the magnetic field surrounding the system
- IMUs are generally composed of 3-axis accelerometer and a 3-axis gyroscope, which would be considered a 6-axis IMU.
- Additionally they can also include **a 3-axis magnetometer**, which would then considered as a **9-axis IMU**.

- Acceleration is the measurment of the change in velocity, or speed by time.
- An Accelerometer is an MEMS (Micro-Electro-Mechanical System) used to measure acceleration forces.
- MEMS capacitive element is employed inside the IC of an accelerometer

GENERAL PRINCIPAL OF ACCELERATION

DISPLACEMENT MEASUREMENT

x - Displacement

MEMS ACCELEROMETER SENSOR BLOCK DIAGRAM

- Gyroscope is a device used to for measuring **angular rotational rate and orientation**.
- Gyorscope adds an additional dimension to the information supplied by the accelerometer by tracking rotation or twist.
- Together Acceleration and Gyro is called as IMU sensor is an electronic device that measures and reports a body's specific force, angular rate and orientation of the body.

MEMS GYROSCOPE SENSOR BLOCK DIAGRAM

VIBRATORY SPRING-MASS GYROSCOPE SYSTEM

- m is the mass in X-Y plane
- K_x (K_y) spring-constants
- X represents the driving axis
- Y represents the sensing axis
- Z represents the rotation axis
- F_{drive} → Ref driving signal (freq and amplitude)

 ω_z >0 (angular rate applied along Z axis)

• F_{cx} and $F_{cy} \rightarrow$ Coriolis force appear in X & Y axis

Displacment in Y (Sensing axis) due to force $F_{cy} \rightarrow$ propotional to ω_z

GYROSCOPE MEMS IMPLEMENTATION

- > A Proof mass (m) placed above the silicon substrate.
- Driving, sensing electrodes, and a suspension support beam system with four fixed support pillars.
- The driving system provides an oscillation (X-axis) with a certain amplitude and frequency.
- > The proof mass becomes an oscillator
- The same proof mass upon external rotation (Y-axis) changes its oscillation movement to the orthogonal direction (Z-axis)
- The sensing electrodes (Z-axis) detect the Coriolis force that is produced by the mixture of driving momentum and external rotation.

CORIOLIS EFFECT

• When a mass (m) moves in a specific direction with a velocity (v)

and

- External angular rate (ω) is applied (Red arrow)
- Coriolis Effect generates a force (F_{coriolis}) that causes the mass to move perpendicularly

The value of this displacement is directly related to the angular rate applied.

GYROSCOPE: TUNING FORK CONFIGURATION (MEMS SCENARIO)

- Two proof of masses (m) moves in opposite direction at a constant frequency.
- When an angular rate is applied, the Coriolis effect produced by each mass is in opposite directions.
- Measuring this change in capacitance, the angular rate can be calculated.

TUNING FORK CONFIGURATION:

OPERATING MODES

Operating configurations:

- Only accelerometer active and gyroscope in Power-Down
- Only gyroscope active and accelerometer in Power-Down
- Both accelerometer and gyroscope active with independent output data rate (ODR).

Operating modes: The accelerometer and the gyroscope can be independently configured in four different power modes:

- Power Down
- Low-Power
- Normal
- High-Performance mode

Additionally, the gyroscope sensor can also be set in Sleep mode to reduce its power consumption.

POWER CONSUMPTION AND NOISE

Power Consumption Mode	Output Data Rate ODR (Hz)	Current Consumption (µA)	
Combo (Gyro+Acc) High power mode	1600	690	
Combo (Gyro+Acc) Normal power mode	208	500	
Combo (Gyro+Acc) Low power mode	53	350	
Accelerometer High power mode	<1600	180	
	>1600	190	
Accelerometer Normal power mode	208	85	
Accelerometer Low power mode	52	25	
	12.5	9	
	1.6	4.5	

		\frown		
	Test Condition	Value	Units	
Acceleration Noise Density	FS = ±2 g	75	µg/√Hz	
	FS = ±4 g	89	µg/√Hz	
	FS = ±8 g	90	µg/√Hz	
	FS = ±16 g	130	µg/√Hz	
Gyro Noise Density	High -performance mode	3.8	mdps/√Hz	
<u> </u>	<u> </u>			

WSEN-ISDS: IMU SENSOR TECHNICAL PARAMETERS

Specifications

- □ Industrial 4.0 and IoT connected devices
- □ Industry tools and factory equipment
- Antenna and platform stabilization
- □ Localization and navigation

Application

D Robotics, drones and automation

- Dimension 2.5 mm x 3.0 mm x 0.86 mm (14pin) LGA package
- □ Acceleration Range: ±2g,/±4g,/±8g,/±16g
- Gyroscope Range: ±250 dps, ±500 dps, ± 1000 dps, ±2000 dps
- □ Resolution 16 bits
- Sensitivity 3%
- Current Consumption HP mode: 690μA, NP mode: 370 μA, LP mode: 280 μA
- $\hfill\square$ Low Noise Density 75 $\mu g \sqrt{Hz}$
- □ Output Data Rate upto 6.6KHz, BW_{acc} 1400 Hz, BW_{Gyro} 937 Hz
- □ Operating Temperature Range: -40°C to +85°C

Special Features

- □ Operation Mode High Performance, Normal, Low Power
- □ 4 kbyte FIFO flexible data handling
- □ 2 Independent Interrupts pins
- □ I²C and SPI bus interface
- Embedded functions: freefall, wake-up, tap, activity, motion, orientation: 6D/4D, Tilt sensing

HOW WSEN-ISDS IS SUITABLE FOR INDUSTRIAL IOT APPLICATIONS

WSEN-ISDS SENSOR: EMBEDDED FUNCTIONS

□ Active/Inactive

WSEN-ISDS SENSOR: EMBEDDED FUNCTIONS

6D/4D Orientation Detection

- > Six orientations of the device in space can be detected.
- > 4D direction function is a subset of the 6D function.
- > Image processing orientation & amplitude of digital camera

WSEN-ISDS SENSOR: EMBEDDED FUNCTIONS

Relative Tilt:

- An interrupt is generated when the device is tilted by an angle > 35°
- Seq0 → Seq1 (Start position changes w.r.t previous Seq end position)

WSEN-ISDS SENSOR: FIFO BUFFER

□ First in First Out (FIFO)

- Reduce communication between sensor and MCU
- 4k bytes to store the output values
- Different modes of operation
 - Bypass mode → No Buffer fill
 - Continuous mode → Replace old with new
 - Bypass to continuous (Record an event)
 - Continuous to bypass (after event)

Smarter power management

> Less/no communication with Microcontroller

INDUSTRIAL MARKET APPLICATIONS

CONCLUSION

- Do we have SDK files available in the GitHub?
- How is the Accelerometer sensitivity measured ?
- What is the purpose of internal Temperature sensor?
- Main difference between the ISDS and ITDS Accelerometer ?
- Is the aging of the sensors taken into account ?

Thank you

