

On the Quest for an optimal DC-DC Isolated gate drive supply topology: Formula E and WE-AGDT Transformers

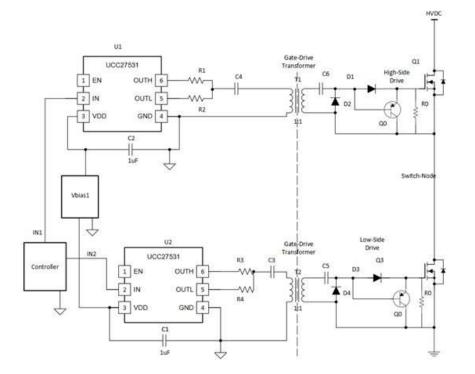
Agenda

- Auxiliary supply in gate driver systems
- DC-DC topologies for gate drive auxiliary supply
- DC-DC Topology Comparison
- WE-AGDT Reference Design and Formula-E

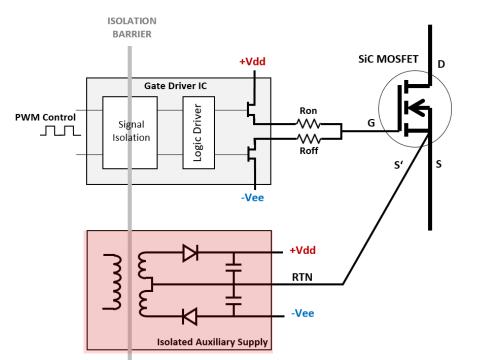
The Auxiliary Supply in SiC-MOSFET and IGBT Gate Driver Systems

Würth Elektronik Group | 2021 | Public | On the quest for an optimal DC-DC auxiliary gate drive topology: Formula E and WE-AGDT Transformers

© All rights reserved by Wurth Electronik Group, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.


3

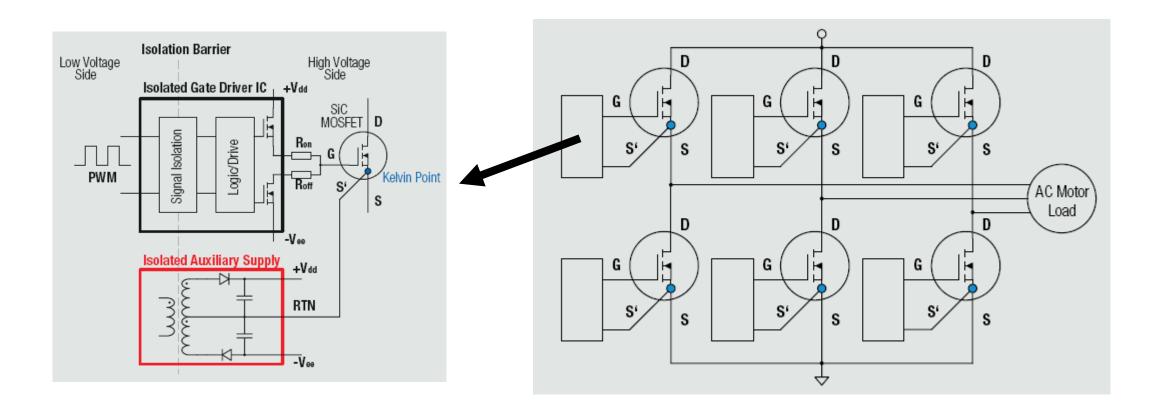
www.we-online.com


WURTH ELEK

Auxiliary Supply in the Gate Drive System

Gate Drive System: Simplified Diagram

Transformer in Direct drive application


Transformer in DC-DC Auxiliary Supply

Würth Elektronik Group | 2021 | Public | On the quest for an optimal DC-DC auxiliary gate drive topology: Formula E and WE-AGDT Transformers

Auxiliary Supply in the Gate Drive System

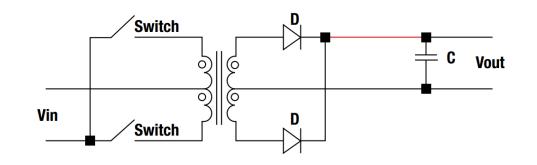
Example Application: Three-phase Motor Inverter

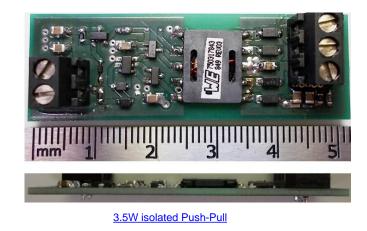
Würth Elektronik Group | 2021 | Public | On the quest for an optimal DC-DC auxiliary gate drive topology: Formula E and WE-AGDT Transformers

© All rights reserved by Wurth Electronik Group, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

6

www.we-online.com

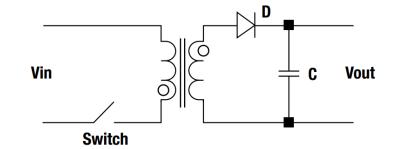

Push-Pull converter



- ✓ Very simple design
- Transformer does not store energy (size)
- Low component count (cost)
- No need for primary snubber
- ✓ Typical efficiency range around 85-92%

Main Disadvantages

- Open loop Operation
- Output Voltage rail(s) are unregulated
- Tightly regulated input voltage is required



Reference Design PMP30555

- Input voltage24V
- Out1 15V /120mA
- Out2 5V / 350mA
- Ultrathin 2mm
- With "cascode" FETs
- No output inductor
- Fixed 50% DC

Würth Elektronik Group | 2021 | Public | On the quest for an optimal DC-DC auxiliary gate drive topology: Formula E and WE-AGDT Transformers

Flyback converter with primary side regulation

Main Advantages

- Wide input voltage range
- Well regulated output voltage rail(s) (< 5%)
- Easy to create multiple outputs
- Fast transient response
- Typical efficiency range around 75-86%

Main Disadvantages

- Transformer stores energy (size)
- Efficiency vs EMI/immunity (trade-off)
- Careful design for best performance

Isolated 2.5-W SiC & IGBT Gate-Drive

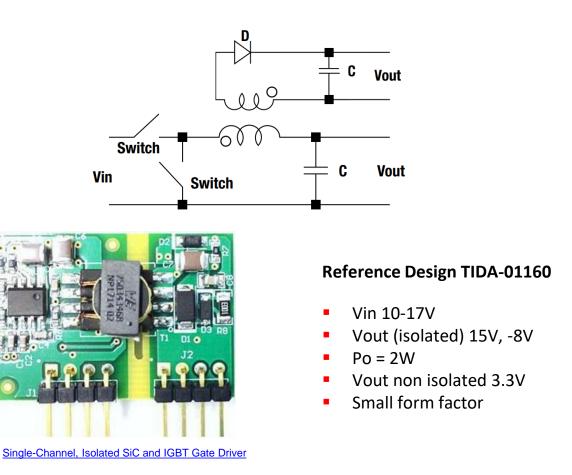
Reference Design PMP30629

- Input voltage 18V-36V
- Outputs +15V & -4V 130mA
- Primary side regulation
- No auxiliary winding
- No optocoupler
- Configurable single/dual output voltages

Würth Elektronik Group | 2021 | Public | On the quest for an optimal DC-DC auxiliary gate drive topology: Formula E and WE-AGDT Transformers

© All rights reserved by Wurth Electronik Group, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

8


Buck converter with Isolated Outputs (Fly-buck[™])*

- Wide input voltage range
- Output voltage rail(s) are indirectly regulated
- Additional non-isolated output voltage rail
- Fast Transient Response
- Typical efficiency range around 75-88%

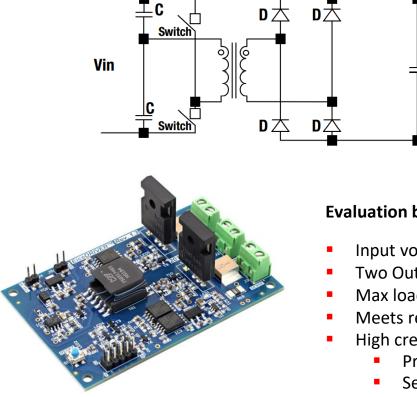
Main Disadvantages

- Performance very sensitive to Leakage inductance
- Regulation/Efficiency vs EMI/Immunity (trade-off)
- Duty cycle practical limitation (~50% max)

(*) Fly-buck ${}^{\scriptscriptstyle\rm TM}$ is a trademark of Texas Instruments Inc.

Würth Elektronik Group | 2021 | Public | On the quest for an optimal DC-DC auxiliary gate drive topology: Formula E and WE-AGDT Transformers

Half-bridge converter


Vout

Main Advantages

- Simple design \checkmark
- Transformer does not store energy (size) \checkmark
- Low component count (cost) \checkmark
- No need for primary snubber \checkmark
- Typical Efficiency range around 85-92 % \checkmark

Main Disadvantages

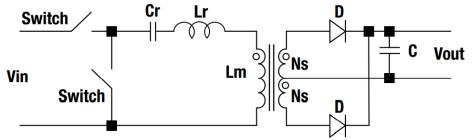
- **Open loop Operation** *
- Output Voltage rail(s) are unregulated ٠.
- Tightly regulated input voltage is required *

Infineon-AN2020-05 EVAL-1ED3491Mx12M-ApplicationNotes-v01 00-EN.pdf

Evaluation board 1ED3491Mx12M

- Input voltage 15V
- Two Output sets (+15V, -7.5V)
- Max load currents 133mA
- Meets reinforced isolation
- High creepage & clearance
 - Pri Pri
 - Sec1 Sec2

Resonant converter



Main Advantages

- Soft-switching of Transistors
- Transformer does not store energy (size)
- Low component count (cost)
- ✓ Very high CMTI
- Typical Efficiency range around 85-92%

Main Disadvantages

- Careful design for best performance
- Output Voltage rail(s) are unregulated
- Tightly regulated input voltage is required

https://www.ti.com/tool/PMP22835

Reference Design PMP22835

- Vin 24V
- Vout 20V, -4V / 300mA
- Very low parasitic capacitance
- High level of integration IC
- Small form factor

DC-DC Topology Comparison for Gate Driver Systems

Würth Elektronik Group | 2021 | Public | On the quest for an optimal DC-DC auxiliary gate drive topology: Formula E and WE-AGDT Transformers

DC-DC Gate Drive Supply Topology Comparison

CMTI, Efficiency, Output Voltage Regulation

Topologies	СМТІ	Efficiency	Output voltage regulation
Push-Pull	<i>√√√</i>	$\checkmark \checkmark \checkmark \checkmark$	$\checkmark \checkmark \checkmark$
PSR Flyback	$\checkmark \checkmark \checkmark \checkmark$	$\checkmark\checkmark\checkmark$	$\checkmark \checkmark \checkmark \checkmark \checkmark$
Isolated Buck	$\checkmark\checkmark$	$\checkmark\checkmark\checkmark$	$\checkmark \checkmark \checkmark \checkmark$
Half Bridge	$\checkmark \checkmark \checkmark \checkmark$	$\checkmark \checkmark \checkmark \checkmark$	$\checkmark \checkmark \checkmark$
Resonant LLC	$\checkmark \checkmark \checkmark \checkmark \checkmark$	$\checkmark \checkmark \checkmark \checkmark \checkmark$	$\checkmark\checkmark$

* With tightly regulated input voltage. Comparison based on a solution of the same area, with the same output voltage and output power specifications.

Würth Elektronik Group | 2021 | Public | On the quest for an optimal DC-DC auxiliary gate drive topology: Formula E and WE-AGDT Transformers

DC-DC Gate Drive Supply Topology Comparison

Input Voltage range, Output regulation, Energy storage

Topologies	Wide input voltage	Regulated output	Transformer energy storage
Push-Pull	X	X	No
PSR Flyback	✓	\checkmark	Yes
Isolated Buck	✓	✓	Yes
Half Bridge	X	X	Νο
Resonant LLC	X	X	No

Würth Elektronik WE-AGDT RD001 Reference Design & Formula E

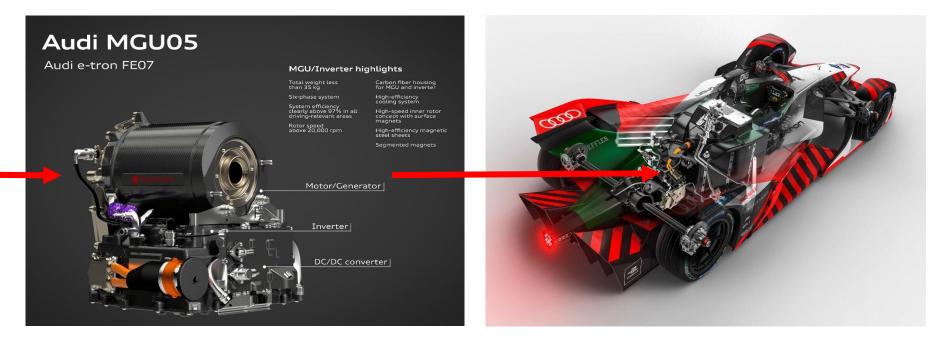
Würth Elektronik Group | 2021 | Public | On the quest for an optimal DC-DC auxiliary gate drive topology: Formula E and WE-AGDT Transformers

15

Würth Elektronik and Formula E

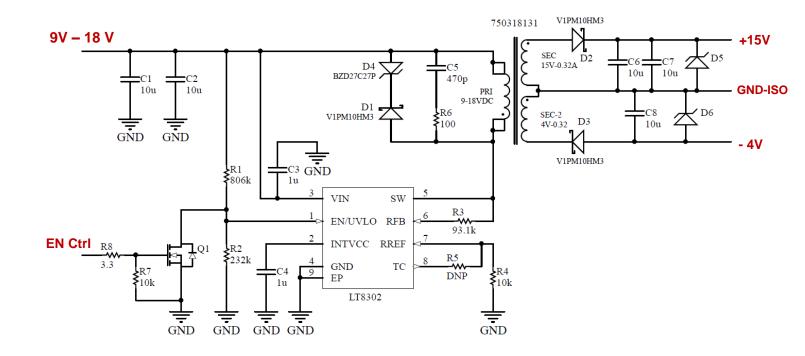
Official Technology Partner of Audi Sport ABT Schaeffler Formula E Team

Würth Elektronik Group | 2021 | Public | On the quest for an optimal DC-DC auxiliary gate drive topology: Formula E and WE-AGDT Transformers

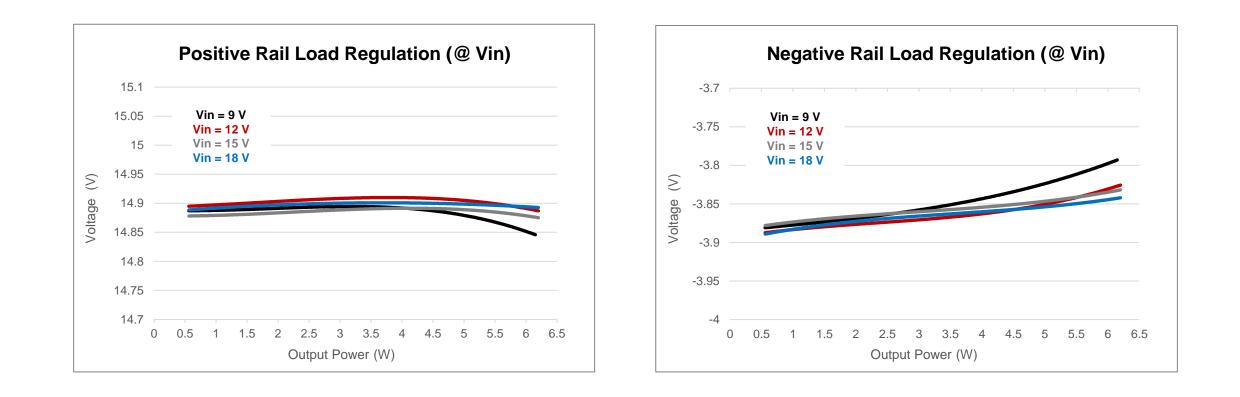

Würth Elektronik and Formula E

WE-AGDT and Reference Design RD001 in the Race !

Würth Elektronik WE-AGDT and Reference Design RD001 are part of the power inverter gate driver system in the innovative Audi MGU05 electric powertrain of the Audi e-tron FE07 Formula-E car.

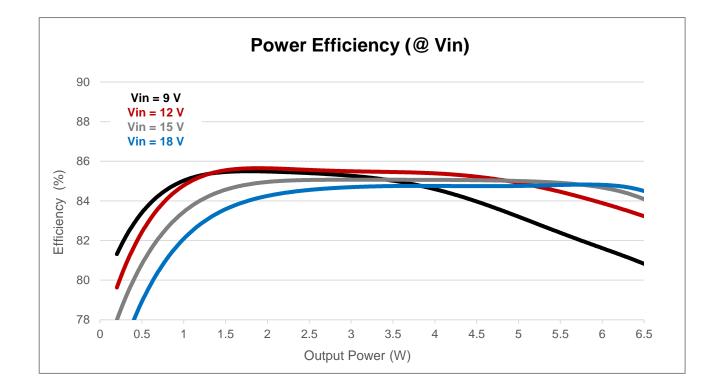

RD001: Basic Specification and Schematic

Basic Electrical Specification (RD001)

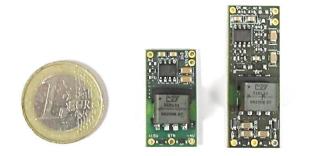

- Vin = 9 18 V
- Vout = +15 / -4 V
- Pmax = 6 W
- Target Application: SiC-MOSFET and IGBT Gate drivers.

PSR Flyback:

- No need additional input and output regulation stages.
- Very compact size and low overall cost is possible with optimized design.



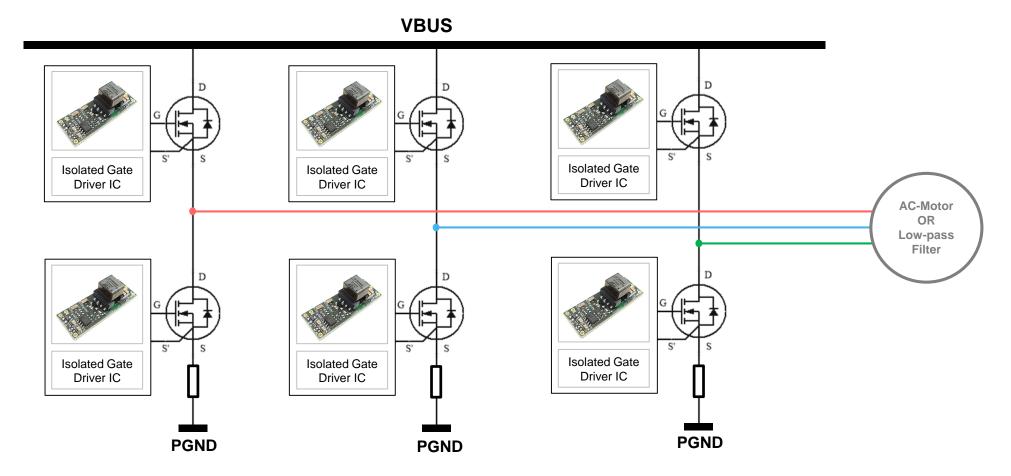
RD001: Output Voltage Regulation


RD001: Power Efficiency

RD001 PCB Layout and Assembly Variants

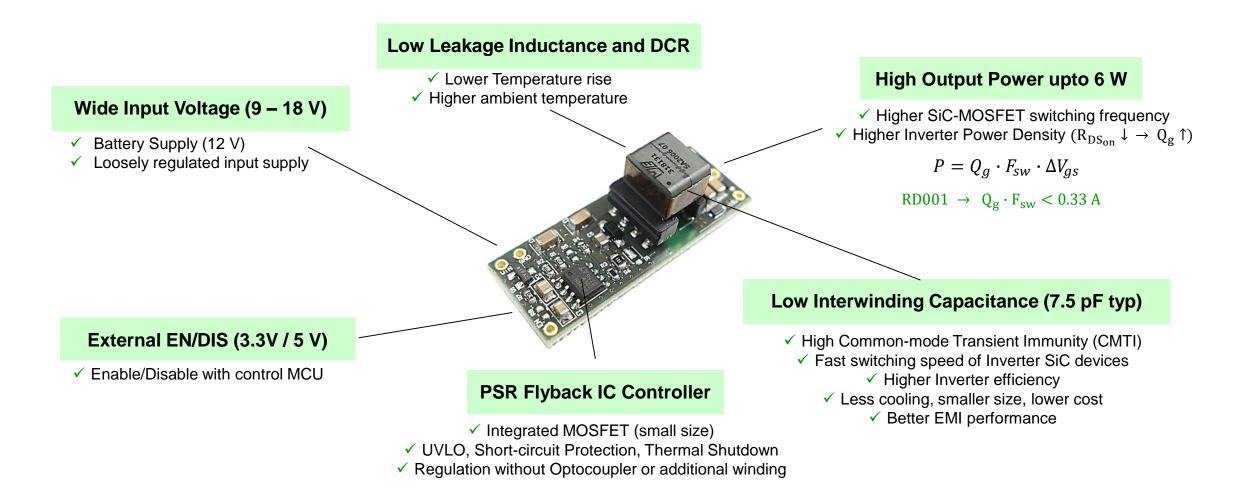
- Two PCB Layout Variants
 - Single-sided, Two Layer
 - Double-sided, Four Layer
- Two Assembly Variants
 - AEC-Q Components
 - Standard

Variant A (LxWxH) = 27 x 14 x 14 mm 4-layer PCB Design Components on Top and Bottom Variant B (LxWxH) = 40 x 14 x 12 mm 2-layer PCB Design Components only on Top side

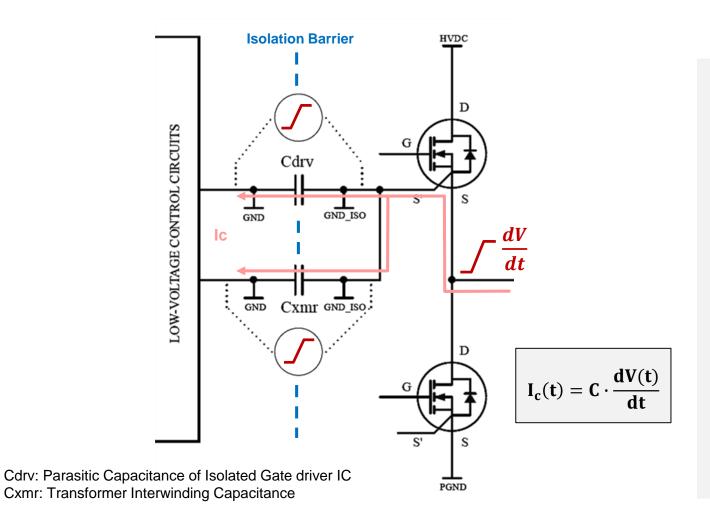

Reference Design Document, PCB Layout and Fabrication files: we-online.com/RD001

Würth Elektronik Group | 2021 | Public | On the quest for an optimal DC-DC auxiliary gate drive topology: Formula E and WE-AGDT Transformers

WURTH ELEP


Isolated PSR Flyback with WE-AGDT Transformer

RD001: Example 3-phase Inverter or Motor Drive Application (simplified)


Würth Elektronik Group | 2021 | Public | On the quest for an optimal DC-DC auxiliary gate drive topology: Formula E and WE-AGDT Transformers

RD001: Example Advantages in Inverter Gate Driver Systems

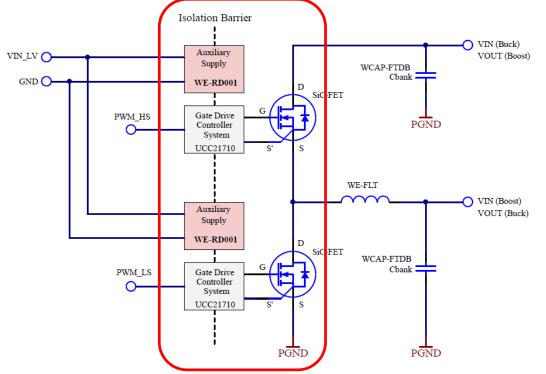
Würth Elektronik Group | 2021 | Public | On the quest for an optimal DC-DC auxiliary gate drive topology: Formula E and WE-AGDT Transformers

Inverter Half-bridge Leg: CMTI and Isolation Barrier Capacitance

- Capacitive Coupling (dV/dt) across isolation barrier
- Common-mode Displacement Currents generated
- Distortion of control signals!
- High Common-mode current stress in the controller!

CMTI: Common-mode Transient Immunity

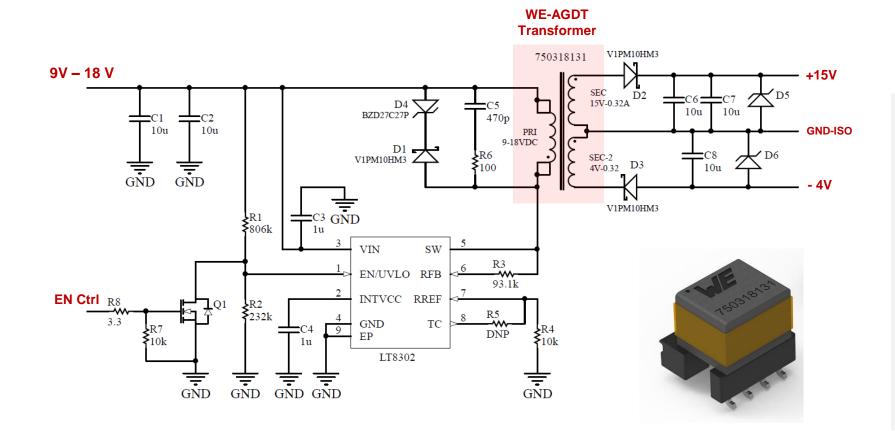
Maximum rate of change of voltage (dV/dt) which can be tolerated across the isolation barrier before malfunction occurs (measured in $kV/\mu s$ or V/ns)


$$(C_{drv} \And C_{xmr}) \downarrow$$
 then CMTI \uparrow

Minimize Interwinding Capacitance !

Würth Elektronik Group | 2021 | Public | On the quest for an optimal DC-DC auxiliary gate drive topology: Formula E and WE-AGDT Transformers

RD001: Example Integration in Gate Driver System (Buck-boost Converter)

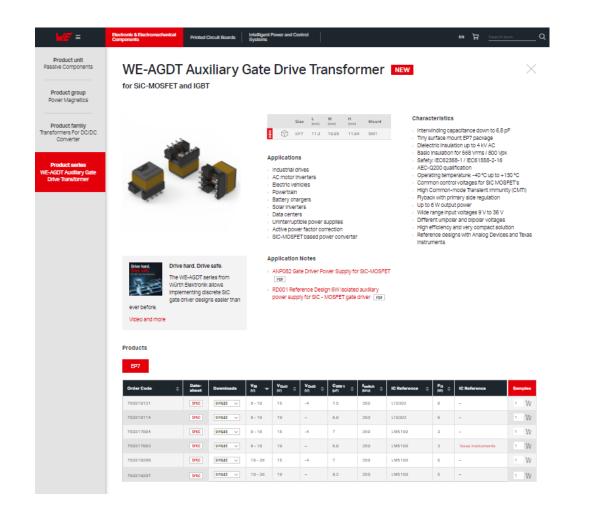

Würth Elektronik Group | 2021 | Public | On the quest for an optimal DC-DC auxiliary gate drive topology: Formula E and WE-AGDT Transformers

WÜRTH ELEKTRONIK

Isolated PSR Flyback with WE-AGDT Transformer

RD001: WE-AGDT 750318131 Transformer

© All rights reserved by Wurth Electronik Group, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.


WE-AGDT Transformer

- Tiny EP-7 bobbin package
- SMD Assembly
- **Basic Insulation**
- 568Vrms/800Vpk
- 4 kV AC Dielectric Insulation
- IEC62368-1 / IEC61558-2-16 •
- **AEC-Q200** •
- Cp = 7.5 pF (typ.)

WE-AGDT Transformer Series

WE-AGDT Transformers Online Catalog: we-online.com/WE-AGDT

WE-AGDT Product Video:

we-online.com/gatedriver

WE-AGDT in Automotive Applications (as of April 2021)

- Formula-E as a harsh-environment testing field (e.g. vibration, humidity, etc). ٠
- AEC-Q200 Qualification is already completed. ٠
- Automotive Qualification (PPAP level-3, IATF 16949) is currently in-progress. ٠

THANK YOU FOR YOUR ATTENTION !!

PLEASE, TYPE IN YOUR QUESTIONS ARE HAPPY TO HELP YOU!

Würth Elektronik Group | 2021 | Public | On the quest for an optimal DC-DC auxiliary gate drive topology: Formula E and WE-AGDT Transformers