DIGITAL WE DAYS 2024

KEEPING THE RHYTHM: HOW CAPACITOR SELECTION AFFECTS CRYSTAL ACCURACY

Sarah Moschuez

WURTH ELEKTRONIK MORE THAN YOU EXPECT

Did you know that choosing the wrong capacitor can cause the heartbeat of your circuit to go out of sync?

AGENDA

- Pierce Oscillator Circuit
- Load capacitance
- Trim Sensitivity
- How to select the right capacitors
- High vs. Low load capacitance
- PCB Layout recommendation
- Series Resonance

QUARTZ CRYSTALS

- *R*₁: Damping of the mechanical oscillation
- L₁: Oscillating mass of the quartz crystal
- *C*₁: Dynamic capacitance, piezoelectric effect
- C₀: Shunt capacitance, coupling capacitances of the quartz crystal

PIERCE OSCILLATOR CIRCUIT

Load capacitance

• The load capacitance in the circuit need to be equal to the specified load capacitance of the crystal

Electrical Parameters

- Load Capacitance (CL) 10.00pF
- Formula to calculate the load capacitance in the circuit:

$$C_L = \frac{C_a * C_b}{C_a + C_b} + C_{stray}$$

LOAD CAPACITANCE

 C_a and C_b

- In best case, C_a and C_b should have the same value
 - If C_a and C_b are not equal than $C_a < C_b$
- *C_{stray}* is typically between 2 pF and 7 pF
- *C_{stray}* includes:
 - the capacitance of the conductive paths
 - input and output capacitance of the microcontroller
- During the design-in phase, the stray capacitance can only be estimated and confirmed later by measurement

LOAD CAPACITANCE

If C_{in} and C_{out} known

If the input and output capacitance of the microcontroller is known:

$$C_{L} = \frac{(C_{in} + C_{a}) * (C_{b} + C_{out})}{(C_{in} + C_{a} + C_{b} + C_{out})} + C_{stray}$$

- *C_{in}* and *C_{out}* are the input and output capacitance of the microcontroller
- *C_{stray}* still contains the capacitance of the conductive paths and is around 2 pF

TRIM SENSITIVITY

 T_s

- Specifies the frequency deviation in ppm if the load capacitance in the circuit changes
- Trim sensitivity [ppm/pF]:

$$T_s = \frac{C_1 * 10^6}{2(C_0 + C_L)^2}$$

- The trim sensitivity of a crystal depends on:
 - Size of the blank
 - Size and shape of the electrodes
 - The load capacitance in the circuit
 - Frequency

7.0 mm x 5.0 mm

3.2 mm x 2.5 mm

2.0 mm x 1.6 mm

TRIM COMPARISON

CFPX-180 vs. IQXC-42 vs. IQXC-26

$$\Rightarrow T_{s\,(8\,pF)} = 22.1\,ppm/pF \qquad \Rightarrow T_{s\,(8\,pF)} = 10.4\,ppm/pF \qquad \Rightarrow T_{s\,(8\,pF)} = 6.5\,ppm/pF$$

FREQUENCY DEVIATION

CFPX-180 vs. IQXC-42 vs. IQXC-26

HOW TO CHOOSE THE RIGHT CAPACITOR

General

- Select a capacitor with stable temperature behaviour
 - NPO
- Select a capacitor with a high enough rated voltage
 - >25 V usually not necessary
- Due to the E-series for capacitor values, maybe not every needed capacitor value is available
 - Choose the next highest or lowest available capacitor value
 - Use RedExpert to find the right capacitors!

HOW TO CHOOSE THE RIGHT CAPACITOR

Example

- Quartz crystal: $C_L = 8 pF$
- Stray capacitance: $C_{Stray} = 5 pF$

 $\rightarrow C_a$ and $C_b = 6 \, pF$

• Available capacitor values at WE:

\mathbf{V}	Order Code	V	Spec	¥	Series 🛛 🍸	Description \forall	Size 🛛 🍸	Ce 🍸	C 🝸	Tole 🍸	V _R T
	885012006030		2007	¥	WCAP-CSGP	General Purpose	0603	NP0	4.70 pF	±0.5 pF	25.0 V
	ି 885012006001		109	¥	WCAP-CSGP	General Purpose	0603	NP0	4.70 pF	±0.5 pF	10.0 V
~	885012005038		1007	¥	WCAP-CSGP	General Purpose	0402	NP0	4.70 pF	±0.5 pF	25.0 V
	0885012005023		1007	¥	WCAP-CSGP	General Purpose	0402	NP0	4.70 pF	±0.5 pF	16.0 V
	885012005005			¥	WCAP-CSGP	General Purpose	0402	NP0	4.70 pF	±0.5 pF	10.0 V
	0885012007027		1007	¥	WCAP-CSGP	General Purpose	0805	NP0	6.80 pF	±0.5 pF	25.0 V
	885012006031			¥	WCAP-CSGP	General Purpose	0603	NP0	6.80 pF	±0.5 pF	25.0 V
	885012005039		207	¥	WCAP-CSGP	General Purpose	0402	NP0	6.80 pF	±0.5 pF	25.0 V
	885012005024		2007	¥	WCAP-CSGP	General Purpose	0402	NP0	6.80 pF	±0.5 pF	16.0 V
			-	_							

$$C_L = \frac{C_a * C_b}{C_a + C_b} + C_{stray}$$

w/F

FREQUENCY MEASUREMENT

How to test your design

- When testing your design, measure the frequency
 - at an isolated clock output
 - or with a low capacitance probe
- Use a frequency counter or an oscilloscope to measure the frequency

$$Frequency_{Dev} = \left(\frac{Frequency_{Meas}}{Frequency_{Datasheet}} - 1\right) * 10^{6}$$

COMPARISON

High load capacitance vs. Low load capacitance

PCB LAYOUT RECOMMENDATION

General Notes

- Keep the traces as short as possible!
- Avoid 90° bends round right angles!
- Place the crystal away from any high frequency device or traces
- Do not cross any other signal lines!
- Microcontroller should have a stable power supply

PCB LAYOUT RECOMMENDATION

Crytal Specific Notes

Either an exposed **GND area** under or a **guard ring** around the crystal:

- Connected to separate GND pin of the IC and independent of the other GND
- Also connect C_a and C_b to this GND _
- For multilayer PCBs: no further _ GND area under quartz

PARALLEL VS SERIES RESONANCE CIRCUITS

Parallel

- For circuits which contain reactive components (capacitors) in the oscillator feedback loop
- Combination of the reactive components and the crystal to accomplished the phase shift necessary

Series

 For circuits which contain no reactive component in the oscillator feedback loop

SERIES RESONANCE

• If a quartz crystal is specified for a series resonant circuit, the crystal is specified in the datasheet with SR

Electrical Parameters Load Capacitance Series Resonant

- In the past used for crystals operated at an overtone frequency
- Series resonance circuits are quite rare now
- If a microcontroller operates with series resonance it will be mentioned in datasheet

SUMMARY

- Choosing the right capacitors is very important
- Even a few pF can have a major influence on the frequency of the quartz crystal
- To help you with your design, we will soon lunch a new Design Kit containing crystals and matching capacitors

830004 coming soon

INTEGRATED SOLUTION

SPXO

- To reduce the design work for the oscillation circuit, an integrated solution can be used
- The integrated solution contains a quartz crystal and an IC, where the IC contains the oscillation circuit
- Requires only a supply voltage and provides an output signal at the resonant frequency

WE-SPXO Simple Packaged Quartz Oscillator

We are here for you now! Ask us directly via our chat or via E-Mail.

digital-we-days@we-online.com Sarah.Moschuez@we-online.de

