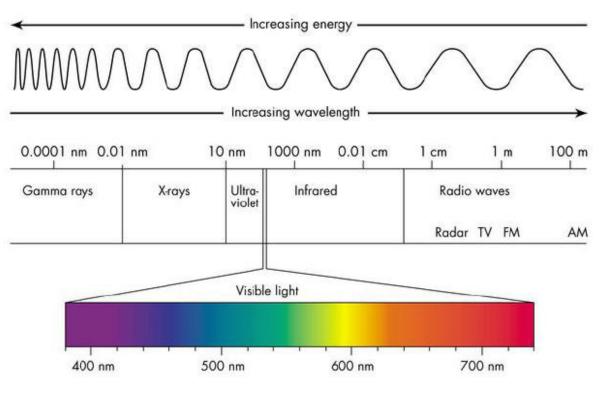
DIGITAL WE DAYS 2024

<u>ICLED – THE REVOLUTION OF LIGHTING</u> <u>CONTROL</u>

Carlos Roberto Hernandez Gómez

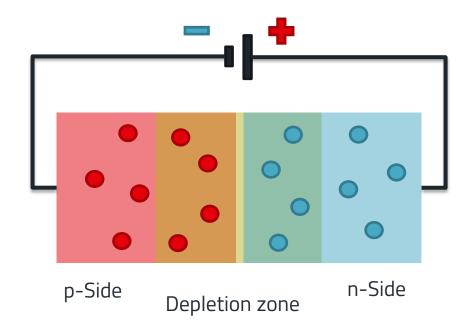
WURTH ELEKTRONIK MORE THAN YOU EXPECT

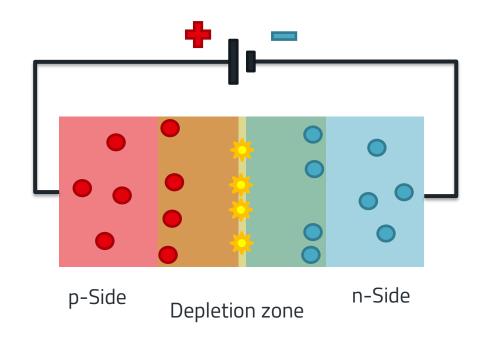

What is light?

- Light Electromagnetic radiation
- Described by:
 - Wavelength (frequency)
 - Energy
- Electromagnetic spectrum is divided into:

Emission's range of

LED technology

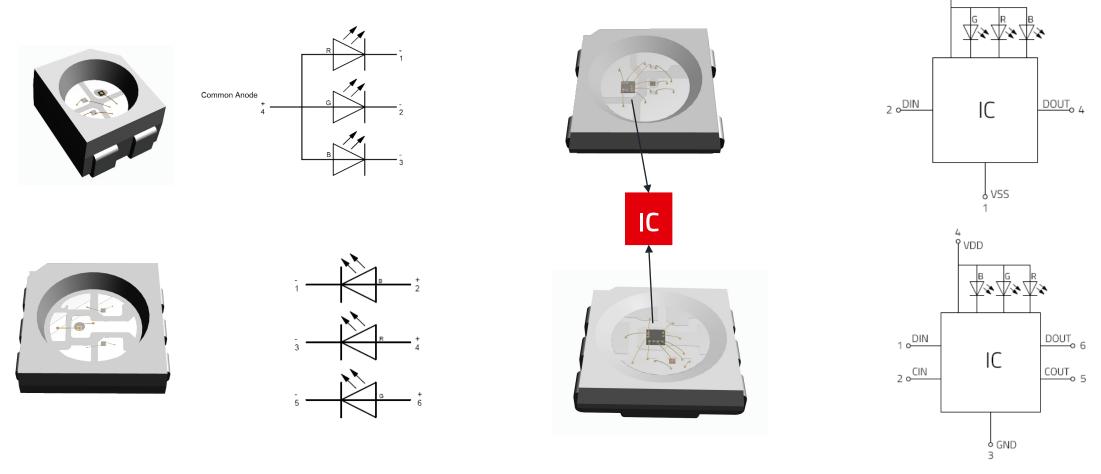

- Radiation Gamma and X-Ray
- Visible spectrum
- Non visible UV, IR
- Radiofrequency



Electromagnetic Spectrum

LED's working principle

Appliying Reverse-Bias: LED doesn't work!


Appliying Forward-Bias: LED lights up!

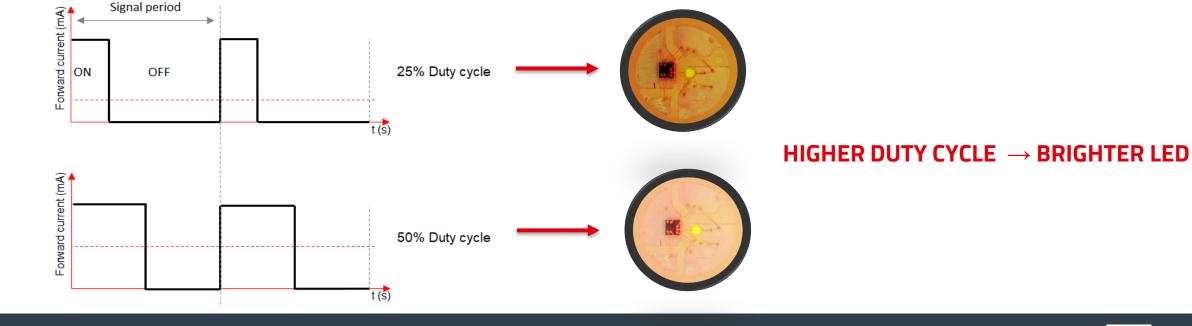
From analog to digital LEDs

From analog to digital LEDs

Visual appearance and schematic of analog LEDs

Visual appearance and schematic of IC LEDs

3 9 VDD

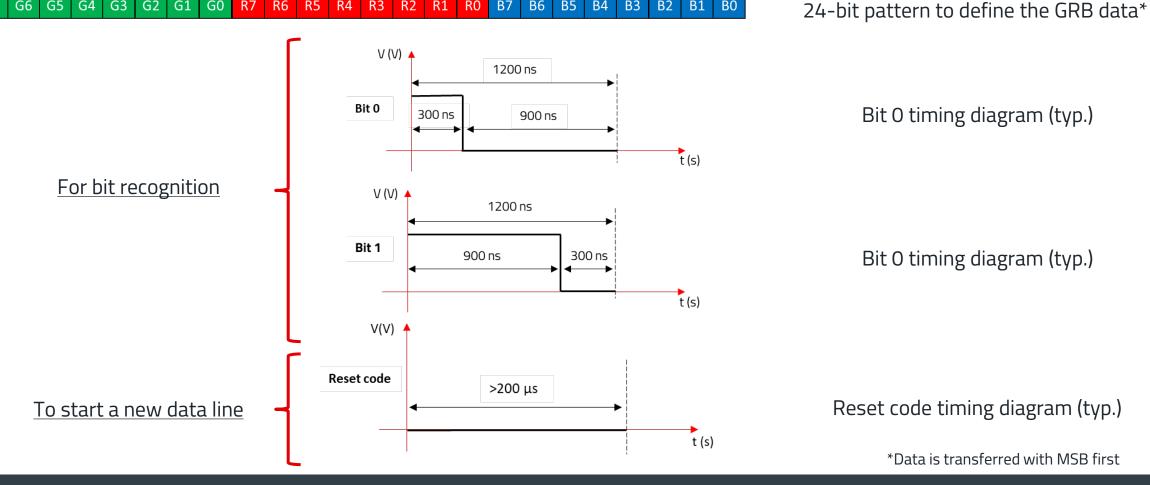


IC LED TECHNOLOGY

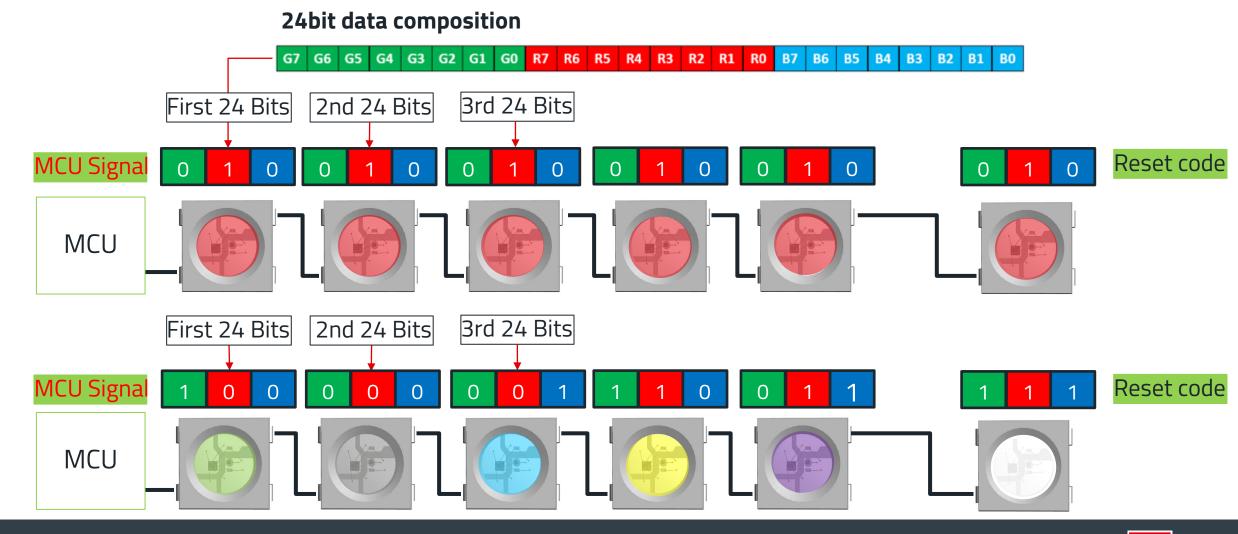
Working principle

- RGB LEDs are dimmed by means of pulse with modulation (PWM)
- The current flowing through each LED can be approximated as: $I_{Favg} \propto I_{Fpeak} \cdot D$
- Where *D* corresponds to the duty cycle of the PWM signal defined by:

$$D = \frac{t_{on}}{t_{on} + t_{off}} = \frac{t_{on}}{T}$$



IC LED TECHNOLOGY


Single wire communication protocol

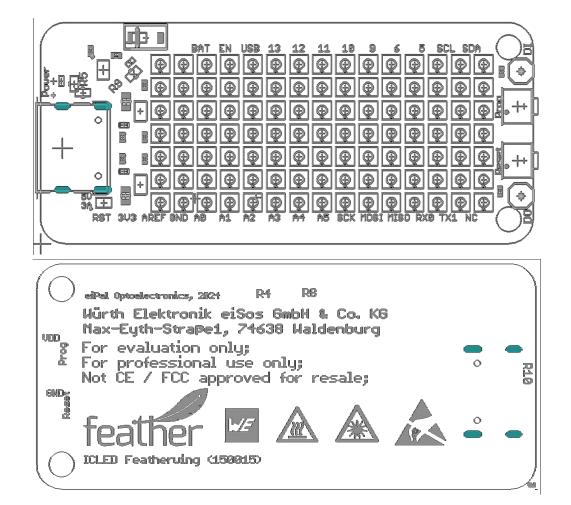
G4 G2 R5 R4 R3 R2 R1 B4 B2 B1 B0 G7 G6 G1 G0 R7 R6 RO Β7 B6 B5 B3

IC LED TECHNOLOGY

Data transmission method

ADVANTAGES - IC LEDS FROM WE

- MSL 3 / MSL 5a (IPx7) * Available for size 2121
- Improved solderability:
 - Plating for Chip LEDs with Sn & Au
 - Plating for PLCC LEDs with Sn & Ag
- Pure gold wire for high reliability
- Reliable LED performance: Requirement to overcome the LED market
- Delivery time: Between 8 and 14 weeks to customer


WE offer you the best solution!

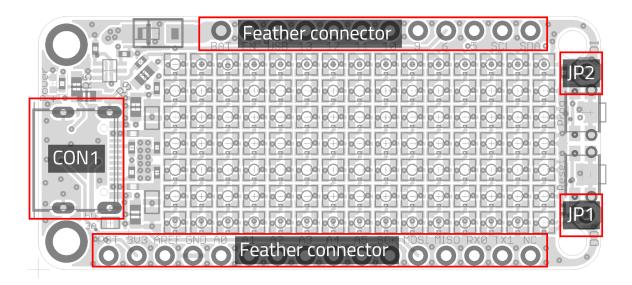
Board design

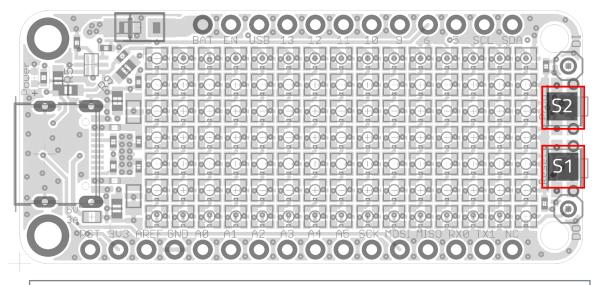
- High density LED display in the FeatherWing-standard
- 4-layer PCB for EMC-compliant design
 - Layer 2: Complete VSS (ground) area
 - Layer 15: Complete VDD area
 - Routing on top & bottom layer
- Power supply via USB-C: 5V @3A
- Combination of other FeatherWings possible
- <u>Usable with 1.8V logic controllers outside FW-standard</u>

IC LED Featherwing design (Top and bottom side)

Basic characteristics

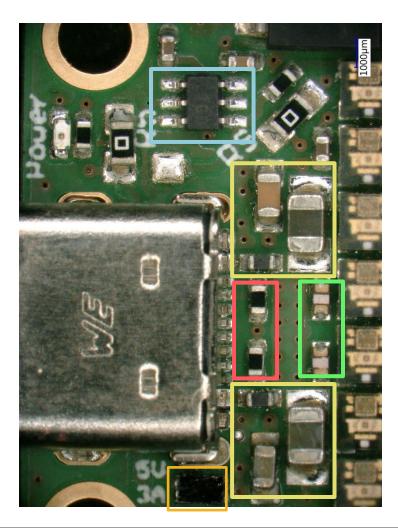
Properties	Value	Unit
Supply voltage	3.3 – 5	V
Logic level high (min)	1.65	V
Ouput logic level high (DOUT)	0.9 * VDD	V
Power consumption (max.)	8	W
Power consumption (with software limitation)	2.5	W
Emitting power density (max.)	16,000	cd/m ²
Peak wavelenght (Red)	630	nm
Peak wavelenght (Green)	518	nm
Peak wavelenght (Blue)	465	nm
Sleep current (typ.)	90	mA
Frame rate (max.)	150	Hz




IC LED Featherwing (Top and bottom side)

Hardware description

- CON1:USB-C connector (5V/3A)JP1:DOUT pin of IC LED 105
- JP2: DIN pin of IC LED 1



- **S1:** RESET pin of the Feather connector
- **S2:** Pin 5 of the Feather connector (interrupt pin)

SMD jumpers are located on the rear side

Hardware description – More features

Level-shifter for optimized logic-levels (V_{IH} between 1.65 V and 3.6 V)

EMC-Filters added in both VDD lines of the USB-C connector

5.1 k Ω resistors to handle out up to 3 A from USB-C power source

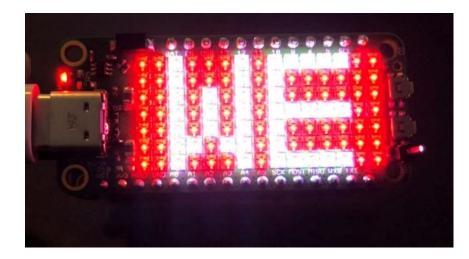
Fuses on each VDD line to avoid overheating and high currents

TVS-Diode added for protection against transient voltage spikes

Software description – Signal generation with DMA and SPI

Required signal is composed of four SPI bits-1-bit: 1110 & 0-bit: 1000

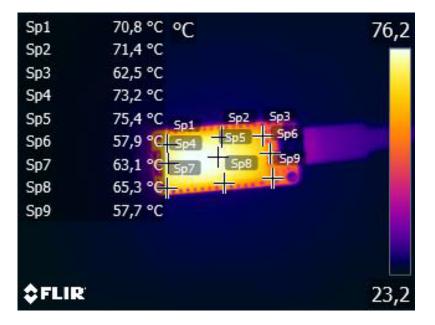
Generated signal for T1H from MCGE (Geneted Mig) nal for PWM: Generated Signal for T1L from MCU (Cortex MO)


Signal measured with logic analyzer "Logic Pro 8" from Saleae

Software description

- C++ library (Visual Studio Code combined with "PlatformIO" extension)
- Signal generation via DMA and SPI
- Framerate up to 150 Hz, arbitrarily adjustable
- HSV to RGB color system conversion implemented
- PWM-restriction to prevent from overheating
- Program-change via interrupt possible

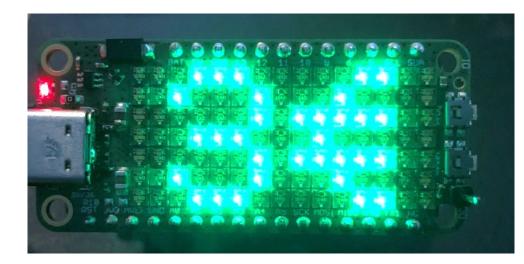
Letters, numbers and even animations implemented in library

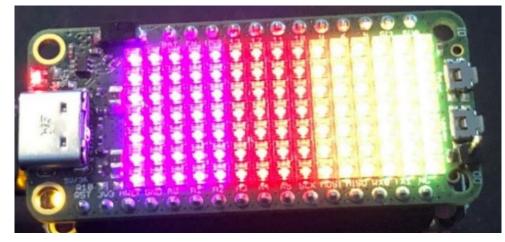


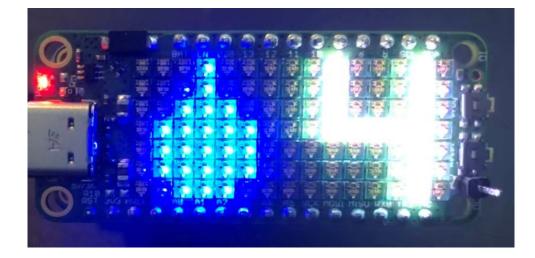
Thermal safety – Implemented restrictions

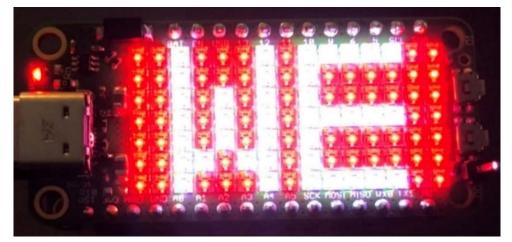
- Temperature with Infrared-camera FLIR A325sc measured on 9 spots
- Featherwing's expected handling time <1s
- The Featherwing's maximum temperature is defined at: 85°C*
- Implemented restrictions:
 - Software → Maximum PWM is 210 (sum of RGB)
 - Hardware → Fuses shut down the board in case of overheating

Ŭ Ũ Č Č Č Č Č Č CONT Ð Ð Ŭ Ŭ Ŭ Ŭ Ð ĕ Ð Ð Ð Ð ē Ð Ð Ð. . Ð Ð ĕ Ğ ĕ Ð, Ð Ð Ð Ð Ð Ð Ð Ð ⊕ ⊕ ⊕ Ð Ð Ð ΘΘ Ă Ð


Temperature measurement with


Software and Hardware restrictions


Highest Temperature: **75,4** °C


*Touchable temperature limits according to IEC 62368-1 Edition 3

Use cases

Live demonstration

- Example functions:
 - init_show ()
 - showRainbow()
 - showPrice()
 - set emoji()
- Combination with FeatherWing sensor possible
 - Show: temperature, relative humidity and absolute pressure
 - Text rotates when the screen is turned around-3axis acceleration sensor

	624	#ifdef TEST116
	625	//initial Test
	626	<pre>strip.init_show();</pre>
	627	<pre>strip.showRainbow(30, 5);</pre>
	628	strip.showPrice("9", 2, 50, 0, 0, 50);
	629	strip.showPrice("19.99", 12, 50, 0, 0, 50);
	630	strip.fill(21,0,112,15);
	631	uint16_t x = strip.set_string("DIGITAL DAYS 2024", 15, 60, 60, 60, 50);
	632	<pre>strip.showRunLoop(100, x);</pre>
	633	// show all emojis
	634	x = strip.set_emoji(1, 4, 20, 20, 0, 75);
	635	x = strip.set_emoji(2, x, 20, 20, 0, 75);
	636	x = strip.set_emoji(3, x, 20, 20, 0, 75);
	637	x = strip.set_emoji(4, x, 20, 20, 0, 75);
	638	x = strip.set_emoji(5, x, 20, 20, 0, 75);
<u> </u>	639	x = strip.set_emoji(6, x, 0, 20, 0, 75);
	640	<pre>strip.showRunLoop(100, x);</pre>
	641	<pre>strip.showTemperature(100, 50);</pre>
	642	<pre>strip.showHumidity(100, 50);</pre>
	643	strip.showBLEdata(50, 0, 50, 30);
	644	#endif
	645	

WÜRTH ELEKTRONIK'S IC LED CATALOG

APPLICATIONS

Matchcode: WL-ICLED

19

Matchcode	Picture	Size	WE Part Number	Packaging	Mounting technology
		2020	1312020030000	Chip LED compact	SMT
	<i>_</i>	3210	1313210530000	Chip LED Side View	SMT
WI-ICLED		2121	1312121320437	PLCC6 with bypass IPx7	SMT
	-	5050	1315050930002	PLCC4	SMT

Home

appliances

000

iOiO

Decorative

lighting

Wearables

E-mobility

Smart

lighting

Traffic

displays

Full color LED Matrix

Gaming peripherials

Π	~~~
Ľ	١

Industrial control systems

We are here for you now! Ask us directly via our chat or via E-Mail.

digital-we-days@we-online.com CarlosRoberto.HernandezGomez@we-online.de

