DIGITAL WE DAYS 2024

ENGINEERING COOL: TROUBLESHOOTING IN THERMAL DESIGN OF ELECTRONICS

Antonio Agapito

WURTH ELEKTRONIK MORE THAN YOU EXPECT

UNDERSTANDING THERMAL DESIGN CHALLENGES

UNDERSTANDING THERMAL DESIGN CHALLENGES

The Need for Thermal Management

• Electronic design tendencies: computer as an example

Eniaco : U.S. Army / Public domain = CDC6400_0 : Jens Gathmann = C64c_system : Bill Bertram = Powerbook_150 : Dana Sibera = rpi4top : Michael Henzler

UNDERSTANDING THERMAL DESIGN CHALLENGES

The Need for Thermal Management

• Electronic design tendencies:

UNDERSTANDING THERMAL DESIGN CHALLENGES

Temperature & Lifetime

Relative life-time on Electronic Components

Device Failure

Mechanical Stress Failure

The **four** stages of thermal management:

- 1. Definition of the case scenario
- 2. Definition of the system
- 3. Find related values for the thermal resistance
- 4. Final Assessment

1. Define Case Scenario

- First, we define our thermal budget and case scenarios
 - Airflows
 - Ambient temperatures
 - TIMs
 - Heat sinks
 - ...

1. Define Case Scenario

- 1. TIM Selection: since it's a heatsink screwed to our component an Electrically insulating thermal is a good choice
 - 1. 1.6 W/m*K
 - 2. 3.5 W/m*K
- 2. Selection of the airflow:
 - 1. 200 LFM
 - 2. 400 LFM
- **3**. Estimation of different ambient temperatures:
 - 1. 20 °C
 - 2. 40 °C
 - 3. 60 °C
- 4. Forward current from the component

Case Study	Description	Ambient Temperature [°C]	Forward current [A]	Air Speed [LFM]
S1	Flectrically	20	10	200
S2	insulating thermal	40	10	200
S3	pad 1.6 W/m*K	60	10	200
S4	Flectrically	20	10	400
S5	insulating thermal	40	10	400
S6	1.6 W/m*K	60	10	400
S7	Flectrically	20	10	200
S8	insulating thermal	40	10	200
S9	3.5 W/m*K	60	10	200
S10	Electrically	20	10	400
S11	insulating thermal	40	10	400
S12	3.5 W/m*K	60	10	400

There can be more variables but these four are a good start for any thermal design!

2. System Draft

• We can do a static analysis using the electrical-thermal analogy

3. Find P_{DISS}

For power dissipation, 10A is being forwarded, we assume a duty cycle of 1

and ambient temperature per diode

w/E

3. Find P_{DISS}

For power dissipation, 10A is being forwarded, we assume a duty cycle of 1

Case Study	Description	Ambient Temperature [°C]	Forward current [A]	Air Speed [LFM]
S1	Electrically	20	10	200
S2	insulating thermal	40	10	200
S3	pad 1.6 W/mK	60	10	200
S4	Electrically	20	10	400
S5	insulating thermal	40	10	400
S6	1.6 W/mK	60	10	400
S7	Electrically	20	10	200
S8	insulating thermal	40	10	200
S9	3.5 W/mK	60	10	200
S10	Electrically	20	10	400
S11	insulating thermal	40	10	400
S12	3.5 W/mK	60	10	400

Rectifier is: GUO40-12NO1

3. Find P_{DISS}

• For power dissipation, 10A is being forwarded, we assume a duty cycle of 1

Case Study	Description	Ambient Temperature [°C]	Dissipated current [W]	Air Speed [LFM]
S1	Electrically	20	9	200
S2	insulating thermal	40	9	200
S3	pad 1.6 W/mK	60	9	200
S4	Flectrically	20	9	400
S5	insulating thermal	40	9	400
S6	1.6 W/mK	60	9	400
S7	Flectrically	20	9	200
58	insulating thermal	40	9	200
S9	3.5 W/mK	60	9	200
S10	Flectrically	20	9	400
S11	insulating thermal	40	9	400
S12	3.5 W/mK	60	9	400

• Now knowing we must dissipate around 9W we can calculate estimate R_{HS} with the heat sink's datasheet

Heatsink is: HSE-B20250-045H

CASE STUDY: THERMAL MANAGEMENT ON RECTIFIERS 3. Find R_{HS}

 Heat sink manufacturers measure performance by forcing air through the fins, so it is a good habit to add 20-30% safety margin.

$$R_{HS} = \frac{Rise \ Above \ Ambient \ T}{Dissipated \ Power} \left(\frac{{}^{\circ}C}{W}\right) \cdot 1.25$$

200 LFM

400 LFM

$$R_{HS} = \frac{34 \,^{\circ}C}{9 \,W} \cdot 1.25 \approx 4.7 \,\frac{K}{W} \qquad R_{HS} = \frac{29 \,^{\circ}C}{9 \,W} \cdot 1.25 \approx 4 \,\frac{K}{W}$$

3. Find $R_{jc} \& R_{TIM}$

• R_{ic} is very straight forward, we can get it from the rectifier's datasheet:

R _{thJC}	thermal resistance junction to case		4.3 K/W
R _{thCH}	thermal resistance case to heatsink	0.50	K/W

In our case scenario, we considered 2 different TIMs assuming a clamping force of 34 N/cm²:

CASE STUDY: THERMAL MANAGEMENT ON RECTIFIERS 3. Find $R_{jc} \& R_{TIM}$

• The data we got from the graph is Thermal Impedance (Z), to get the equivalent thermal resistance (R) we simply dive it by the material's surface area

TIM 1.6 W/mK

$$3.94 \ \frac{Kcm^2}{W} \div 6.97 \ cm^2 = 0.57 \ \frac{K}{W}$$

TIM 3.5 W/mK
1.81
$$\frac{Kcm^2}{W} \div 6.97 \ cm^2 = 0.25 \ \frac{K}{W}$$

R_{HS}

 $\mathsf{R}_{\mathsf{TIM}}$

К_{јс}

3. System Draft

4. Final Assessment

• Now that we have all the data, we can layout our case scenarios and asses:

Case Study	Description	Ambient Temperature [°C]	Dissipated current [W]	Air Speed [LFM]
S1		20	9	200
52	Electrically insulating	40	9	200
S3	thermal pad 1.0 w/mit	60	9	200
S4		20	9	400
S5	Electrically insulating	40	9	400
S6	thermal 1.0 Write	60	9	400
57		20	9	200
58	Electrically insulating	40	9	200
S9	thermal 5.5 withit	60	9	200
S10		20	9	400
S11	Electrically insulating	40	9	400
512	and sis with	60	9	400

Value	Unit	S1	S2	S 3	S4	S5	S6	S7	S8	S9	S10	S11	S12
T _A	°C	20	40	60	20	40	60	20	40	60	20	40	60
Air Speed	LFM	200	200	200	400	400	400	200	200	200	400	400	400
P _{DISS}	W	9	9	9	9	9	9	9	9	9	9	9	9
R _{HS}	K/W	4.7	4.7	4.7	4	4	4	4.7	4.7	4.7	4	4	4
R _{TIM}	K/W	0.57	0.57	0.57	0.57	0.57	0.57	0.25	0.25	0.25	0.25	0.25	0.25
R_{cj}	K/W	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
T _{HS}	°C	62.3	82.3	102.3	56	76	96	62.3	82.3	102.3	56	76	96
T _{TIM}	°C	67.43	87.43	107.43	61.13	81.13	101.13	64.55	84.55	104.55	58.25	78.25	98.25
Tj	°C	71.93	91.93	111.93	65.63	85.63	105.63	69.05	89.05	109.05	62.75	82.75	102.75

- In no scenario we reach the maximum junction temperature, although we do get close to it
- With a WE-TINS 3.5 W/mK and an airflow of 400 LFM, as expected, we get the lowest T_i

Estimation tool?

- The thermal-resistance model is a unidimensional analysis
 - It assumes all heat goes flows in one direction and that there are no other sources / emissions
- It is a static analysis, the values that we get are when the system reaches a thermal balance
- Using a higher performing TIM has a limit, at some point it will have a larger impact a more efficient heatsink
- Take these conclusions as a reference, not as a fact
- Next Steps:
 - Simulation -> Evaluate PCB layout, thermal coupling
 - Prototype validation

BEST PRACTICES IN THERMAL DESIGN TROUBLESHOOTING

Thermal Management "Stakeholders"

Thermal Management "Stakeholders"

Thermal Management "Stakeholders": PCB Level

- The THT to SMD transition
 - Circuit boards started as a physical support that allowed the mounting & interconnection of components

$$T_j = T_a + P \cdot R_{ja}$$

Due to miniaturization now 80-90% of heat flows to the ambient through the PCB

Material	k (W/mK)
Air	0.027
Glass	1
Steel	45
Aluminum	237
Gold	318
Copper	386
Plastic	0.1-0.4
FR4	0.25-0.3

Thermal Management "Stakeholders": PCB Level; Placement & PCB layout

• Single & most important thermal design decision

 Same IC, same operating criteria, same ambient can have different temperatures depending on PCB placement

1W IC, Vertical Placement, Ambient Temperature: 20°C

Thermal Management "Stakeholders"

Thermal Management "Stakeholders": Thermal Interface Materials

Thermal Management "Stakeholders": Thermal Interface Materials

• Vertical heat transportation, realized by **thermal interface materials** (TIM) or **gap fillers**

Horizontal heat transportation, realized by **heat spreaders**

Thermal Management "Stakeholders": Thermal Interface Materials

• Gap Fillers

Thermal Management "Stakeholders": Thermal Interface Materials

• Gap Fillers

Thermal Management "Stakeholders": Thermal Interface Materials

- Heat Spreaders:
 - Synthetic Graphite
 - Horizontal thermal conductivity: 1800 W/m·K
 - Thickness: 37um
 - 1kV AC electrical insulation
 - One side adhesive

Material	k (W/mK)
Air	0.027
Glass	1
Steel	45
Aluminum	237
Gold	318
Copper	386

Thermal Management "Stakeholders"

Thermal Management "Stakeholders": Heat Sinks

• There are several types and manufacturing methods, the most general are:

Extruded

Pin-Fin

Thermal Management "Stakeholders": Heat Sinks

• There are several types and manufacturing methods, the most general are:

- Use case scenario:
- A device that is in a fixed position
- Perpendicular to airflow (natural, forced)

- Use case scenario:
 - Airflow direction unknown or changing

Thermal Management "Stakeholders": Heat Sinks

- EMC Considerations:
 - IC or transistor interfaced with a heatsink can lead to EMI issues
 - TIMs can be very thin \rightarrow Capacitance
 - When currents fluctuate, capacitances inject stray currents into heatsinks
 - Stray currents should be controlled and returned to sources

Thermal Management "Stakeholders": Heat Sinks

- EMC Considerations:
 - IC or transistor interfaced with a heatsink can lead to EMI issues
 - TIMs can be pretty thin → Capacitance
 - When voltages fluctuate, capacitances inject stray currents into heatsinks
 - Stray currents should be controlled and returned to sources

Thermal Management "Stakeholders"

Thermal Management "Stakeholders": Cooling

- Airflow Direction
- Fan Placement
- Fan Size
- Noise Levels
- Airflow Obstructions
- Fan Speed Control
- Redundancy

CONCLUSION

KEY STRATEGIES FOR ADDRESSING THERMAL ISSUES

Importance of early consideration of thermal management in the design process

KEY STRATEGIES FOR ADDRESSING THERMAL ISSUES

Importance of early consideration of thermal management in the design process

- Error asociated by the nature of the iterations:
 - Calculations: Normally the estimated error is around 10°C, but can go as high as 20°C since doesn't take into account many other factors that are happening in the surroundings, like pressure drops, too high power density on the PCB and more heat ways.
 - Simulation: Normally the estimated error is around 2°C.
 - Prototyping: No error.

IMPORTANCE OF PROACTIVE THERMAL MANAGEMENT

- Improved reliability.
- Reduced risk of failure.
- Enhanced performance.

Relative life-time on Electronic Components

We are here for you now! Ask us directly via our chat or via E-Mail.

digital-we-days@we-online.com Toni.Agapito@we-online.de

