

FILTER FOR UNISOLATED DC/DC-CONVERTERS

Markus Thoß Field Application Engineer

WURTH ELEKTRONIK MORE THAN YOU EXPECT

- Filter placement
- Transmission modes
- DM noise source
- Filter topologies
- DM filter
- Measures against radiated noise

FILTER PLACEMENT

Filter Arrangement

- 1nH per 1mm
- 0.5nH per Via

WE eiSos

Filter Arrangement

Layout: Influence on Insertion Loss

0805, Bad Layout

0805, Good Layout

Filter Placement

Example: Line Filter

Avoid parallel structures and coupling of input/output

Objective of the Good and Bad Layout

Keypoints

- Single Point PGND vs. big PGND Loop
- Correct vs. Wrong Capacitor Position
- Same Semiconductors, different Passives
- Shielded Choke vs. Unshielded Choke
- Alu-Electrolyte vs. Polymer Caps
- Filter @ I/Os vs. No Filter at all
- Ferrite in the Power Loop of a DCDC

Noise sources with the Boost Converter

w/F

PCB Layout - Bad Design

PCB Layout - Good Design

TRANSMISSION MODES

Transmission modes

Differential Mode

Common Mode

14 | FILTER FOR UNISOLATED DC/DC-CONVERTERS MAT | 20.05.2025

Transmission mode noise

- Differential mode currents
 - Current path as in circuit diagram
 - Easy to follow paths
 - Return current path very close
 - Relatively large currents
 - Filters with LC, π, T topologies
 - Conducted EMI problem

- Common mode currents
 - Current path unexpected
 - Current via parasitic paths
 - Return current path very large
 - Relatively small currents (µA)
 - Filtering with CMC and Y-Caps
 - Radiated & conducted EMI problem

Differential mode noise

Theory: Conducted emissions measurement - Symmetrical LISN

<u>Recognizing the transmission mode</u>

Theory: DM and CM noise path in a flyback converter

<u>Setup</u>

DM NOISE SOURCE

Schematic - Bad Design

19V → 24V/0,5A

w/F

Input capacitor - Bad Design

Redexpert Alu Cap Selection for Fsw 600kHz

Conducted EMI Calculation with 220µF Elko Cin - Bad Design

Triangular approximation (differentail mode only):

$$D = \frac{U_{out} - U_{in} + U_d}{U_{out} + U_d} = \frac{24V - 19V + 0.5V}{24V + 0.5V} = 0.224$$
$$\Delta I = \frac{U_{in}}{L \cdot f_{sw}} \cdot D = \frac{19V}{33\mu H \cdot 600kHz} \cdot 0.224 = 0.21A$$

$$|I_{cin}[600kHz]| = \frac{\Delta I}{\sqrt{2} \cdot \pi^2 \cdot D \cdot (1-D)} \cdot |\sin(\pi \cdot D)| = \frac{0,21A}{\sqrt{2} \cdot \pi^2 \cdot 0,224 \cdot (1-0,224)} \cdot |\sin(\pi \cdot 0,224)| = 56mA$$

 $|U_{cin}(600kHz)| = |Z_{cin}(600kHz)| \cdot |I_{cin}(600kHz)| = 98m\Omega \cdot 56mA = 5,49mV$

$$5,49mV \rightarrow 20 \log\left(\frac{5,49mV}{1\mu V}\right) = 74,8dB\mu V - 6dB(LISN Voltage Divider) = 68,8dB\mu V$$

Limit CISPR32 Class B is 46dBµV → approx. 33dB Damping is necessary

Verification of the triangular approximation - Bad Design

DM noise on input with DM/CM splitter

69dBµV as calculated

Input capacitor - Good Design

Redexpert Polymer Cap Selection for Fsw 600kHz

Schematic - Good Design

19V → 24V/0,5A

•/E

Conducted EMI Calculation with 47µF Polymer Cin

Triangular approximation (differential mode only):

$$D = \frac{U_{out} - U_{in} + U_d}{U_{out} + U_d} = \frac{24V - 19V + 0.5V}{24V + 0.5V} = 0.224$$

$$\Delta I = \frac{U_{in}}{L \cdot f_{sw}} \cdot D = \frac{19V}{33\mu H \cdot 600kHz} \cdot 0,224 = 0,21A$$

$$|I_{cin}[600kHz]| = \frac{\Delta I}{\sqrt{2} \cdot \pi^2 \cdot D \cdot (1-D)} \cdot |\sin(\pi \cdot D)| = \frac{0,21A}{\sqrt{2} \cdot \pi^2 \cdot 0,224 \cdot (1-0,224)} \cdot |\sin(\pi \cdot 0,224)| = 56mA$$

 $|U_{cin}(600kHz)| = |Z_{cin}(600kHz)| \cdot |I_{cin}(600kHz)| = 14m\Omega \cdot 56mA = 784 \mu V$

$$784\mu V \rightarrow 20 \log\left(\frac{784\mu V}{1\mu V}\right) = 57,9 dB\mu V - 6 dB(LISN Voltage Divider) = 51,9 dB\mu V$$

Limit CISPR32 Class B is $46dB\mu V \rightarrow approx$. 16dB Damping is necessary

Verification of the triangular approximation - Good Design

DM noise on input without Filter

52dBµV as calculated

FILTER TOPOLOGIES

Dimensioning of a filter choke

- A filter choke in series connection forms a **first-order low-pass**.
- **Differential-mode insertion loss** in decibel:

$$A_{\rm dm} = 20 \cdot \log \left| 1 + \frac{Z_{\rm filter}}{Z_{\rm s} + Z_{\rm l}} \right| {\rm dB}$$

Minimum required filter impedance Z_{filter} at a noise frequency f_n:

 $|Z_{\text{filter}}|_{f_{\text{n}}} \ge |Z_{\text{s}} + Z_{\text{l}}|_{f_{\text{n}}} \cdot \left(10^{\frac{A_{\text{dm}}(f_{\text{n}})}{20}} - 1\right)$

• For an exact calculation the source and load impedance for each noise frequency would have to be known.

Dimensioning of a Filter

Adjusting the Operating Point with Capacitors

Parallel Capacitors decrease System Impedance

$$A_{\rm dm} = 20 \cdot \log \left| 1 + \frac{Z_{\rm F}}{Z'_{\rm s} + Z'_{\rm l}} \right| \rm dB$$

- Caps will also work as an RF Short to Ground
- Pay Attention to SRF of the Components
- 2nd order Filter Topologies can be adjusted to system impedances

Filter order

The filter order is determinded by the number of energy storage elements (L & C).

Filter calculation by hand

• Amount of the transfer function of the low-pass filter:

$$\left|\frac{u_{\sup}}{u_{\inf}}\right| = \frac{|X_C|}{X_L + X_C}$$

• Reactance:

 $X_L = 2\pi \cdot f \cdot L_{\rm F}$

$$X_C = -\frac{1}{2\pi \cdot f \cdot C_F}$$

-6dB cutoff frequency:

$$f_{\rm c} = \frac{1}{2\pi \cdot \sqrt{L_{\rm F} \cdot C_{\rm F}}}$$

Gain Plot 2nd Order LC Filter

<u>Filter topologies – Overview</u>

<u>Filter topologies – inductance vs. SMD-ferrite</u>

• Parasitic capacitance C_p :

→ Power inductor: 10pF ... 500pF → SMD-ferrite: 5fF ... 5pF

- Loss resistance R_p:
 - → Power inductor: < 30kΩ→ SMD-ferrite: 10Ω ... 3kΩ

$$f_{res} = \frac{1}{2 \cdot \pi \cdot \sqrt{L_p \cdot C_p}}$$
$$|Z(f_{res})| = R_p$$

L-filter

- Insertion loss for $Z_{s} = Z_{l} = 50\Omega$: $A_{dm,50} = 20 \cdot \log \left| 1 + \frac{Z_{L}}{100\Omega} \right| dB$
- General insertion loss:

$$A_{\rm dm} = 20 \cdot \log \left| 1 + \frac{1}{Z_{\rm s} + Z_{\rm l}} \cdot \sum_{n} Z_{L,n} \right| \, \mathrm{dB}$$

Filter elements – Capacitance

- Extension of the L-filter with another frequency-dependent element:
 - Capacitor / capacitance
- Series inductance Ls:
 - SMD type: 1nH ... 5nH
- Series resistance Rs:
 - SMD type: 20mΩ ... 300mΩ (1Ω)

<u>C-filter</u>

- Insertion loss for $Z_s = Z_l = 50\Omega$: $A_{dm,50} = 20 \cdot \log|1 + 25\Omega \cdot Y_{C1}| dB$
- General insertion loss:

$$A_{\rm dm} = 20 \cdot \log \left| 1 + \frac{1}{Y_{\rm s} + Y_{\rm l}} \cdot \sum_{n} Y_{C,n} \right| \, \mathrm{dE}$$

LC-filter (Unshielded filter choke)

- Insertion loss for $Z_s = Z_l = 50\Omega$: $A_{dm,50} = 20 \cdot \log \left| 1 + 25\Omega \cdot Y_C + \frac{Z_L}{100\Omega} + \frac{Z_L \cdot Y_C}{2} \right| dB$
- General insertion loss:

$$A_{\rm dm} = 20 \cdot \log \left| 1 + \frac{Z_1 \cdot Y_C \cdot (Z_L + Z_s) + Z_L}{Z_s + Z_1} \right| dB$$

Filter capacitor position (Top / Bottom)

LTspice simulation - Filter PD2 (unshielded) – capacitor on top

Link to LTspice simulation

LTspice simulation - Filter PD2 (unshielded) – capacitor on bottom

J44 J48

LTspice simulation - Filter MAPI (molded) - capacitor on top

LTspice simulation - Filter MAPI (molded) - capacitor on bottom

Near field (H-field)

Unshielded vs. molded filter choke

DM FILTER

I/O Filter Arrangement for DCDC

2nd order LC filter to filter differential mode conducted EMI

Filter calculation by hand

- 1. Selection of the filter capacitor with REDEXPERT (<u>https://we-online.com/re/5sH1x8Bx</u>):
 - C>1µF with low ESR and ESL: MLCC (MLCC with DC-Bias consideration!), Film, Polymer or Polymer Hybrid
 - and $f_{r,Cin} > f_{sw}$ (Switching frequency) is a good choice
 - ➢ 10µF/50V 1210 X7R 885012209073

Filter calculation by hand

- Select corner frequency of the input filter max. 1/10 of the switching frequency of the switching regulator for min. 40dB attenuation at the switching frequency
- **3**. Calculation of filter inductance:

$$f_{c} = \frac{1}{2\pi\sqrt{LC}} \rightarrow L_{F} = \frac{1}{(2\pi\frac{1}{10}f_{sw})^{2} \cdot C_{F}}$$
$$= \frac{1}{(2\pi\frac{1}{10}600kHz)^{2} \cdot 7,26\mu F} \approx 1\mu H$$

- **4**. Selection of the next largest inductance value
 - ➤ 1,5µH e.g. 1,5µH/2,08A PD2 3512 7447732015
 - > SRF of the inductor ideally more than 30MHz

Filter Simulation with REDEXPERT Filter Designer

Filter Simulation with REDEXPERT Filter Designer

Filter Simulation with REDEXPERT Filter Designer

Download, installation paths

- Download from the Analog Devices website → <u>https://www.analog.com/en/design-center/design-tools-and-</u> <u>calculators/ltspice-simulator.html</u>
- Current version (11/2024): 24.0.12
- Previous version: 17.0.42
- Installation paths:
 - Version 17.0.42
 - Program → C:\Program Files\LTC\LTspiceXVII
 - User directory → C:\Users \ <*name*> \Documents\LTspiceXVII
 - Version 24.0.12
 - Program → C:\Users \ <Name> \AppData\Local\Programs\ADI\LTspice
 User directory → C:\Users \ <Name> \AppData\Local\LTspice

Folder structure

- Example circuits → C :\Users\ <Name> \ AppData\Local\LTspice\examples\
 - Applications
 - Educational
- Libraries → C:\Users\ <Name> \ AppData\Local\LTspice\lib\
 - **cmp** \rightarrow standard components (.bead, .bjt, .cap, .dio, .ind, .jft, .mos, .res)
 - sub → Subcircuits (Linear Technology, Analog Devices, Maxim Integrated) with subfolders for other manufacturers, e.g. Würth Elektronik (\Contrib\Wurth)
 - sym \rightarrow circuit symbols, also with "\Contrib" subfolder

- Würth Elektronik components are contained in the following standard libraries:
 - standard.bead
 - standard.cap
 - standard.ind
- Further components \rightarrow C :\Users \ <*Name*> \AppData\Local\LTspice\lib\sym\Contrib\Wurth\
 - Automotive → common mode chokes, HF coils
 - Capacitors\MLCC → Ceramic capacitors (NPO, X5R, X7R) with DC bias modeling
 - EMC components \rightarrow common mode chokes, line filter modules
 - Optoelectronics \rightarrow IR LEDs, UV LEDs, laser diode, colored LEDs, white LEDs, optocouplers
 - PowerMagnetics

 Coupled inductors, audio filter inductors, PFC chokes, power transformers, current transformers
 - Signal \rightarrow HF inductors, signal transformers

Built-in standard component libraries

For simple component models, LTspice offers standard libraries for capacitors, inductors, ferrite beads, as well as
resistors, diodes, mosfets, and BJTs. These models use the standard equivalent circuit for that component. These
models guarantee the highest simulation speed.

Components "Contrib" directory

 The "Contrib" directory in the LTspice components library is a place for contributors to include their models directly in LTspice. It is sorted by manufacturer, and within our Wurth folder, the organization is structured by product type to make it easy to find the model you need. For most products, there is one symbol per series. The specific part number is chosen by right-clicking the symbol after it is placed in the schematic.

Library updates

 We have most of our component libraries in LTspice directly, and will continue to add models there. To update the LTspice libraries, select "Update Components" from the Tools menu to update your LTspice program and libraries (or "Sync Release" in older LTspice versions).

LTspice models are also available on the WE website

 Our model libraries can still be downloaded from our website if you are unable to use the "Update Components" feature (or "Sync Release" in older LTspice versions) due to your company's IT security policies or because of other technical issues. Please also check our website if you do not find the model installed directly in LTspice. For model installation and usage instructions, please refer to the document "Using the LTspice Model Libraries" below.

Ideal components

Link to LTspice simulation

Simulation result

Real components

Link to LTspice simulation

LTSpice schematic

V(out)/V(ref) 20dB 0 dB/decade TO UB/UR CAUR OdB -46,62dB at 600kHz -20dB ××× Bloca /vs. -43,9dB (Filter designer) ¦ -40dB -60dB 0 dB/decade -80dB $f_{\rm r,L,F} \approx 130 MHz$ $f_{\rm sw} \approx 600 kHz$ $f_{\rm r,C,F} \approx 1.8 MHz$ $f_c \approx 41 kHz$ -100dB+-1kHz 10kHz 100kHz 1MHz 10MHz 100MHz

Simulation result

Real components with DC-Bias

.ac dec 1k 1k 1G .param Rsource=0.1 Rsink=100 fsw=600k

Link to LTspice simulation

LTSpice schematic

Simulation result

LTSpice Würth Elektronik - LTspice MLCC DC-bias model

- The new Würth Elektronik MLCC DC-Bias models are already integrated in LTspice 24.x
- Path:\Contrib\Wurth\Capacitors\MLCC
- Voltage vs. capacitance implementation:
 - $C = (C_0 C_{SAT}) \cdot \operatorname{sech}\left(\frac{V}{V_{th}}\right) + C_{SAT}$
 - sech() = Hyperbolic secant

Q=(x*{Csat})+({C0}*{Vth}*arctan(sinh(x/{Vth})))-({Csat}*{Vth}*(arctan(sinh(x/{Vth})))) .param Rs=2.2E-6 Ls=2.59E-10 Rp=5e7 C0=2.2E-6 Csat=3.62E-7 Vth=4.49

Measured and fitted voltage dependent behavior of capacitance. Part number: 885012106018, C: 2.2µF, Matchcode: WCAP-CSGP, Size: 0603, Material: X5R, V_R: 16 V.

Filter Simulation with REDEXPERT Filter Designer - Good Design

Good choice to filter the range from 150kHz to 30MHz

Verification of the filter effect - Good Design

DM noise on input with Filter

Insertion loss around 40dB (but 62.5dB calculated with REDEXPERT)

PCB Layout - Good Design

MEASURES AGAINST RADIATED NOISE

EMC Test Lab

CISPR32 Radiated Emission

EMC Test Lab - Bad Design

CISPR32 Radiated Emission

Bad Design

EMC Measurement Conducted up to 600MHz

Setup

EMC Measurement Conducted up to 600MHz - Bad Design

FAE Equipment Bad Design CM

Setup with cable ferrite (74275815)

Impedance 1 Turn / Frequency

EMC Measurement Conducted up to 600MHz with cable ferrite (74275815)

FAE Equipment - Bad Design CM

Dimensioning of a cable ferrite

Impedance vs. Attenuation

- A cable ferrite in series connection forms a **first-order low-pass Filter**
- Insertion loss in decibel:

$$A_{\rm dm} = 20 \cdot \log \left| 1 + \frac{Z_{\rm F}}{Z_{\rm s} + Z_{\rm l}} \right| \rm dB$$

- Minimum **filter impedance** at a noise frequency $Z_{\text{filter}} = |Z_{\text{s}} + Z_{\text{l}}|_{f_{\text{n}}} \cdot (10^{\frac{A_{\text{cm}}(f_{\text{n}})}{20}} - 1)$
- For an exact calculation the source and load impedance for each noise frequency would have to be known.

Dimensioning of a cable ferrite

System impedance

• System impedance at a noise frequency

•
$$|Z_{s} + Z_{l}|_{f_{n}} = \frac{Z_{\text{filter}}}{\left(\frac{A_{\text{cm}}(f_{n})}{20dB} - 1\right)}$$

 \succ For 12dB attenuation with a 409 Ω cable ferrite @ 190Mhz

•
$$|Z_{\rm s} + Z_{\rm l}|_{f_{\rm n}} = \frac{409\Omega}{\left(\frac{12dB}{10^{\frac{12dB}{20dB}} - 1}\right)} \approx 137\Omega$$

- > Z_1 is known / $Z_1 = 25\Omega = CM$ -Impedance of the LISN > $Z_S = 112\Omega$
- ➢ High impedance system
- > Inductive coupling may be the source of the noise
 - > Let's try an h-field probe to find the source

Dimensioning of a cable ferrite with REDEXPERT

https://we-online.com/re/5sHwSLa5He

			REDEXPER	T Ferrites for C	able Assem	bly		
System	To Filters: Z _{1T} @190 MHz	≥296 Ω						
PARAMETERS	\forall Order Code \forall	Series 🛛 🖓	Sper Z _{1T} @190 MHz 🝸	Att @190 MHz 🛛 🏹	L	Cable ${\ensuremath{\texttt{a}}}$ /Width $_{\text{Max}}$	Cable pole 🍸 Cable t	уре 🍸 🤉
112 Ω 10.0 dB 190 MHz 12,0 Ω	✓ ○74275815	WE-STAR-BUENO	👼 407 Ω	11.9 dB	56.2 mm	8.50 mm	- Round	
	✓ ◇74275815S	WE-STAR-BUENO	👼 407 Ω	11.9 dB	56.2 mm	8.50 mm	- Round	
	74271378	WE-NCF	🗃 320 Ω	10.4 dB	35.0 mm	26.5 mm	- Round	
	• 7427028	Split Ring	🗟 320 Ω	10.4 dB	35.0 mm	26.5 mm	- Round	
		WE-AFB	353 Ω	11.1 dB	25.0 mm	3.30 mm	- Round	
Applications Hints	✓ ◆74270032	WE-AFB	🖻 325 Ω	10.5 dB	25.0 mm	4.60 mm	- Round	
 Long Datasignal Lines: 90 Ω Clock- and Datasignal Lines: 50 Ω 	✓ ◆74270036	WE-AFB	340 Ω	10.8 dB	28.5 mm	5.10 mm	- Round	
 — Supply Voltage Lines (V_{CC}): 10 Ω — Ground Planes (GND): 1 Ω 	✓ ◆74270062	WE-AFB	338 Ω	10.8 dB	45.0 mm	5.70 mm	- Round	
O- User defined	<							
Z _{in} z 112 Ω Zout z 25 Ω Ø DETAILS		Impedance 1 Turn / Free	190 MHz	■ 101 111 11 100 100 100 100 100 100 100		Impedance 2 Turns / F	z 100 MHz	1 GHz
	100 kHz	I MHz 10 MHz Frequenc	100 MHz y	1 GHz	100 kHz	1 MHz 10 MH Frequer	z 100 MHz ncy	1 GHz

Near Field 1GHz (H-Field Probe - Big Loop)

Near Field 1GHz (H-Field Probe - Big Loop)

<u>Near Field 1GHz (H-Field Probe - Small Loop - Schottky Diode)</u>

Near Field 1GHz (H-Field Probe - Small Loop - Schottky Diode)

Schottky Diode Reverse Recovery Current

Recovery time "tb" is critical due to possible oscillations

The softer the recovery, the lower the RF EMI noise but the higher the losses "Qrr" in the diode

ESR

Schottky Diode Reverse Recovery Current

Recovery Softness Faktor:

 $RSF = \frac{t_b}{t_a}$ the larger the value, the "softer"

- I_{RR} and t_{rr} are strongly temperature-dependent values! (does not apply to SiC/GaN)
 - > You could use a soft recovery diode or solve the problem by extending t_b with a ferrite

Redexpert (https://we-online.com/re/5oUI3TFk)

Chip Bead Selection @ 0,5A lout and 190MHz → Reactance XL under 10MHz as low as possible!

Schematic Good Design

19V → 24V/0,5A

Time Domain Measurements

Voltage over Schottky Diode

Bad Design

Good Design with Ferrite

Good Design no Ferrite

Noise from the FET

- Oscillations are caused by parasitic component effects (also in combination with the layout)
- Choose an MOSFET with a small drain/source capacitance
 - > MOSFET fixed for this bad/good comparison
- Choose an MOSFET with moderate on/off slope
 - > MOSFET fixed for this bad/good comparison
 - However, the slope can also be slowed down by gate resistance

Schematic Good Design

19V → 24V/0,5A

Time Domain Measurements

FET Gate Source Voltage

Bad Design Vgs MOSFET

Good Design Vgs MOSFET

Time Domain Measurements

Switch Node Voltage

Bad Design

Good Design no Ferrite

Good Design with Ferrite

89

tr: 41.2 ns

Spectrum of a trapezoidal voltage/current waveform

$$\tilde{t} = \sqrt{2} / f$$
 = 100kHz / $t_{\rm r}$ = $t_{\rm f}$ = $t_{\rm sl}$ = 10ns / D = 10% or. D = 90%

ĺ

t_p: pulse width

 \succ whereby:

• $t_{\rm sl}$: slope-time • $t_{\rm sl} \approx t_{\rm r}$ or

• $t_{\rm sl} \approx t_{\rm f}$

 \succ whereby:

• $t_p = D \cdot T$ or • $t_p = (1 - D) \cdot T$

> whichever is smaller

D: duty-cycle

• *f* : frequency

• $T = \frac{1}{f}$: period-time

 \succ $t_{\rm sl}$ dominated by $t_{\rm r}$ or $t_{\rm f}$

whichever is smaller

t_r: rise-time

t_f: fall-time

Spectrum of a trapezoidal voltage/current waveform depending on duty-cycle

 $\widehat{U} = \sqrt{2} / f$ = 100kHz / t_{sl} =10ns / D = 10% or. 90% vs. 50%

Link to LTspice simulation

- A waveform with 50% duty cycle only has odd harmonics
- A clock signal with 50% duty cycle has a greater amplitude of the first harmonic than a 10% or even a 90% duty cycle signal
 - However a 90% clock signal has more power than a 10% or 50% clock signal, but this power adds to the DC component only (0 Hz)

Spectrum of a trapezoidal voltage/current waveform depending on slope-time (rise-/fall-time)

 $\widehat{U}=\sqrt{2}$ / f = 100kHz / $t_{\rm sl}$ = 10ns vs. 100ns / D = 10% or. D = 90%

- The frequency response begins to drop significantly at frequencies that are higher than the frequency determined by the riseand/or fall-time (=slopetime)
- An increase of the rise- and fall-time by factor 10 reduces the amplitude of the highfrequency harmonics also by factor 10 (-20 dB)

Link to LTspice simulation

Spectrum of a trapezoidal voltage/current waveform depending on ringing

 $\widehat{U} = \sqrt{2}$ / f = 100kHz / t_{sl} = 10ns / D = 50% / 50MHz ringing vs. No ringing

The ringing introduces higherfrequency components (harmonics)

- In the example, the harmonics around 50MHz (resonance frequency) are about 30dB (32x) higher in comparison with the signal without ringing
- It is possible that the trace on which the signal propagates acts as an efficient (resonant) antenna at these higher frequencies

EMC Test Lab - Good Design

CISPR32 Radiated Emission

Good Design: With all Filters and Chip Bead Ferrite after Schottky Diode

EMC Measurement Conducted up to 600MHz - Good Design

FAE Equipment - Good Design CM

