

EMC DESIGN TIPS

Markus Thoß FAE

WURTH ELEKTRONIK MORE THAN YOU EXPECT

<u>Agenda</u>

- Coupling paths
 - Shielding demonstration
 - Coupling demonstration
- Ground Concept
- Power Integrity
- Layer Stack
- Arrangement of Traces & Vias
- Filter Placement
- Grounding
- Layout Considerations
 - Power Inductors
 - Crystals & Oscillators

<u>EMI</u>

EMI and HF can be found everywhere...

COUPLING PATHS

Everything is an Antenna

Electric Dipole Antenna

Electric Monopole Antenna

Magnetic Loop Antenna

Everything is an Antenna

...even if there is no Antenna

Differential Mode

Common Mode

Radiated coupling

Frequency, wavelength

Vacuum

Critical wavelength Structures that tend to radiate into the far \geq field

$$l_{\rm krit}\approx \frac{\lambda_0}{10}...\frac{\lambda_0}{20}$$

Medium $\lambda = \frac{1}{f \cdot \sqrt{\varepsilon_0 \cdot \mu_0} \cdot \sqrt{\varepsilon_r \cdot \mu_r}}$

1) FM-Radio (a) 100MHz • $\lambda_0 = 3m; \frac{\lambda_0}{4} = 75cm; \frac{\lambda_0}{20} = l_{krit} = 15cm$

2) WiFi @ 2,4GHz • $\lambda_0 = 12,5$ cm; $\frac{\lambda_0}{4} = 3,13$ cm; $\frac{\lambda_0}{20} = l_{\text{krit}} = 6,25$ mm

Radiation emissions

Measurement setup

- Fully Anechoic Chamber (FAC):
 - Absorbers also on the floor no superposition of direct and reflected ray: no height Scan.
 - No change in the setup between emissions and immunity easy to handle for labs..
 - The DUT needs to be in the height of the antenna tip FAC is made for table top equipment and not for floor
 - standing Equipment.

Example - electric shaver

- Charging mode:
 - Charger is part of the DUT
- Shaving mode:
 - Battery powered without cable
- Using it wrong?
 - Shaving mode with cable

Example - electric shaver: Charging mode

Example - electric shaver: battery powered working mode

- High peak detector:
 - Brushed motor
 - Motor bursts
- CISPR 14-1-1:
 - No Limits above 1 GHz

Example - working mode with cable

Reducing EMI

- Sufficient EMC can be achieved by suited measures at the noise source, coupling path or sink.
 - Primary Measure
 Reduce emission from noise source
 - Secondary Measure
 Break coupling paths
 - Tertiary Measure

Increase immunity of the sink

SHIELDING DEMONSTRATION

DUT: Comb generator with 20 MHz harmonics

Unshielded Noise source for Reference

Fully Shielded Box

- DUT in the Box, Sealed with tinfoil and copper tape
- 60 dB Attenuation @ 360 MHz.

Shielded Box, 20mm hole

- Completely sealed housing can rarely be realized
 - Interfaces, Cooling, Maintanance

Shielded Box, 20mm hole and 50cm Cable

- Completely sealed housing can rarely be realized, e.g. due to Interfaces
- The Cable is **not connected** to the noise source

Shielded Box, several small holes

- Completely sealed housing can rarely be realized, e.g. due to cooling
- A grid of small holes emulates ventialation gilles

Shielded Box, several 20cm slits

- Completely sealed housing can rarely be realized, e.g. due to cooling
- Sometimes slits are used for ventilation

Shielded Box, 20mm hole, BNC-Cable, Shield is not connected

- Inside the box, the shield is stripped from the cable
- The Shield is **not connected** to the Box

EMC DESIGN TIPS MAT | 20.05.2025

24

Shielded Box, BNC-Cable, Shield connected by pigtail

- Inside the box, the shield is stripped from the cable
- The Shield is connected to the Box by a 10 cm Pigtail / by a 2 cm Pigtail

Shielded Box, BNC-Cable, Shield properly connected

- Inside the box, the shield is stripped from the cable
- The Shield is connected to the Box 360° with copper tape (not flawless)

COUPLING PATHS

Conducted coupling

- Physical coupling path formed by a direct contact
- DUT and LISN (Noise Sink) are directly connected via a cable
 - Reduction of the noise source impedance due to low-impedance components (e.g. a low-impedance input capacitor in a DC/DC converter)
 - LC filter to interrupt the coupling path

Conducted emissions

Electric shaver emission test – charging mode

× Q-Peak (Q-Peak/Lim.Q-Peak) (Phase 1) + CISPR.AVG (CISPR.AVG/Lim.Avg) (Phase 1)

Origins

- Originates from high dU/dt
- Parallel conductors form a parasitic capacitance
- Coupling capacitance is directly proportional to the length of the parallel trace run

Isolating Components	typ. Coupling Capacitance
Optocoupler	0,55 pF
Solid State Relay	0,510 pF
Gate Drive Transformer	210 pF
Electromechanical Relay	10100 pF
Digital Isolator	100200 pF
Digital Isolator (int. SMPS)	300600 pF
Transformers in SMPS	Up to 1000 pF

Effects

• Voltage interference at the load:

$$u_{\mathbf{n},\mathbf{l}} = \mathbf{i}_{\mathbf{n}} \cdot \frac{R_{\mathbf{i}} \cdot Z_{\mathbf{1}}}{R_{\mathbf{i}} + Z_{\mathbf{1}}} = C_{\mathbf{1}\mathbf{2}} \cdot \frac{\mathrm{d}u_{\mathbf{n}}}{\mathrm{d}t} \cdot \frac{R_{\mathbf{i}} \cdot Z_{\mathbf{1}}}{R_{\mathbf{i}} + Z_{\mathbf{1}}}$$

• Laplace made easy: replace $\frac{d}{dt}$ by $j\omega$

$$U_{n,l} = U_n \cdot j \ \omega \ C_{12} \cdot \frac{R_i \cdot Z_1}{R_i + Z_1}$$

$$C_{12} = \varepsilon \cdot \frac{A}{d}$$

- $u_{n} \bigotimes_{l} \bigcup_{l} u_{n,l} \bigcup_$
- Doubling the frequency doubles the crosstalk (+6 dB)
- Doubling the sink impedance (Ri||Z1) doubles the crosstalk

Coupling experiment

Testsetup

EMC DESIGN TIPS MAT | 20.05.2025

32

Experiment - 10 kΩ load resistance - 0 / 2 mm distance

Experiment - 10 kΩ load resistance - 2 mm distance - grounded ShielDIY stripe (one side)

Experiment - 10 k Ω load resistance - 2 mm distance - capacitance to the GND plane

Experiment - 10 k Ω load resistance - 2 mm distance - 1 M Ω far end termination

Experiment - 10kΩ load resistance - 2 mm distance - 1 MΩ Far end termination - Split plane

Measures to decrease coupling

Primary Measure

- Decrease dU/dt by selecting a slower signal edges
- A Low pass filter to take off the edges

Secondary Measure

- Shorten/avoid parallel trace runs
- Small areas for switched polygons (e.g. DC/DC switch node)
- Increase distance between affected paths
- Electrical shielding (Cable, PCB, Housing)

Origins

- Originates from high dl/dt
- Parallel traces form a parasitic transformer
- Mutual Inductance increases with shorter distance

Effects

• Voltage interference at the load (Z1 = Near End):

$$u_{\mathrm{n,l}} = M_{12} \cdot \frac{\mathrm{d}\mathbf{i}_{\mathrm{n}}}{\mathrm{d}t} \cdot \frac{Z_{1}}{R_{\mathrm{i}} + Z_{1}}$$

• Lapace made easy: replace
$$\frac{d}{dt}$$
 by $j \omega$
 $U_{n,l} = I_n \cdot j \omega M_{12} \cdot \frac{Z_1}{R_i + Z_1}$
 $M_{12} = \mu \cdot N_1 N_2 \cdot \frac{A}{l}$

- Doubling the frequency doubles the crosstalk (+6 dB)
- Crosstalk increases with inductive loop dimensions
- Phase reversal of the induced current can be observed at the far end
- Voltage interference at the source (Ri = Far End):

$$U_{\mathrm{n,2}} = -I_{\mathrm{n}} \cdot j \ \omega \ M_{\mathrm{12}} \cdot \frac{R_{\mathrm{i}}}{R_{\mathrm{i}} + Z_{\mathrm{1}}}$$

Inductive (dominant) vs. Capacitive Coupling

EMC DESIGN TIPS

MAT | <u>20.05.2025</u>

40

Experiment - 50 Ω load resistance - slotted plane - 0 / 2 mm distance

Inductive (dominant) vs. Capacitive Coupling

EMC DESIGN TIPS

MAT | 20.05.2025

41

Experiment - 50 Ω load resistance - 2 mm distance - slotted plane - grounded ShielDIY stripe (one side)

Inductive (dominant) vs. Capacitive Coupling

Experiment - 50 Ω load resistance - 2 mm distance - slotted plane vs. slot

Simulation: Return Path on slotted GND plane

Experiment - 50 Ω load resistance - 2 mm distance - slotted plane - grounded ShielDIY stripe (both sides)

Experiment - 10 k Ω load resistance - 2 mm distance – slotted plane - 1 M Ω far end termination

Inductive vs. Capacitive Coupling (dominant)

Experiment - 10 k Ω / 50 Ω load resistance - 0 mm distance

EMC DESIGN TIPS MAT | 20.05.2025

46

Capacitive vs. Inductive Coupling

Experiment - 50 Ω load resistance - 2 mm distance - grounded ShielDIY stripe (one side)

Capacitive vs. Inductive Coupling

Experiment - 50 Ω load resistance - 2 mm distance - solid gnd-plane vs. slotted plane

Capacitive vs. Inductive Coupling

Experiment - 50 Ω load resistance - 2 mm distance - solid gnd-plane vs. slotted plane

Capacitive Coupling (dominant)

Frequency response analysis (FRA) - 50 Ω load resistance - 2 mm distance – solid gnd plane

Doubling the frequency doubles the crosstalk (+6 dB)

30°/

300 MHz DC 50Ω

10 dB/

300 MHz 500 µV/

DC 50Ω

> In circuits with primarily capacitive loads, current leads the voltage (ideally +90°)

Inductive Coupling (dominant)

Frequency response analysis (Frau) - 50 Ω load resistance - 2 mm distance - slotted plane

- Doubling the frequency doubles the crosstalk (+6 dB)
- > phase at the far end differs from capacitive coupling (ideally -90°)

Measures to decrease coupling

Primary Measure

- Decrease dl/dt by selecting a lower switching frequency and slower signal edges
- A filter Inductor/Ferrite to take off the edges

Secondary Measure

- Decrease magnetic loop area
- Increase distance between affected circuits
- Orthogonal component placement
- Magnetic shielding with ferrite materials (soft permeability, high μ_r)

Impedance Coupling

Origins

- Interference affects circuits with a mutual traces
- Circuits share an impedance and therefore the voltage across that impedance
- Main cause for high mutual impedances is self-inductance across copper traces

Impedance Coupling

A closer look

Impedance Coupling

- Coupling impedance: $\underline{Z}_0 = R_0 + j\omega L_0$
- Interference voltage at the load:

$$u_{n,l} = \frac{u_n}{Z_2 + (R_i + Z_1) \| Z_0} \cdot \frac{Z_1 \cdot Z_0}{R_i + Z_1 + Z_0}$$

GROUND CONCEPT

Ground Concept

Distribution across multiple PCBs

Return Path for AC and DC currents

Simulation: Return Path depending on Frequency

10 Hz

Simulation: Return Path depending on Frequency

1 kHz

Measurement: Return Path on slotted GND plane

Measurement: Return Path on slotted GND plane

Simulation: Return Path on slotted GND plane

Seperating functional blocks

Splitting GND?

Slotting the GND Plane to form seperate reference points (AGND, DGNG, PGND)

Routing the Return Path

Layer Jumps in Critical Signals

Bot

GND2

POWER INTEGRITY

Power Integrity

Voltage Drops caused by Peak Currents

Digital Systems usually allow for a 5...10% voltage ripple

Power Integrity

Defintion

- Keep the voltage ripple lower than the specification
 - Stable Supply for all depending Systems
- Control Ground Bounce
 - Stable Reference throughout the PCB
- Maintain Electromagnetic Compatibility
 - Avoid Interference with other Components/Systems

Blocking Capacitors

Mode of Operation and Selection Criteria

Power Integrity

Effect of Multiple Caps on System Impedance

Power Integrity

Optimiziation of Caps in Design

Frequency

Blocking Caps

Combined Characteristics vs. Measurement

Blocking Caps

Insertion Loss Measurement with Oscilloscope

73 EMC DESIGN TIPS MAT | 20.05.2025
LAYER STACK

Impedance of a VCC/GND Layer System

PCB Layers as Parallel-plate Capacitor

$$C = \varepsilon * \frac{A}{d} = \varepsilon_0 * \varepsilon_r * \frac{A}{d}$$

- C Capacitance [F]
- A Area [m²]
- D Distance [m]
- ε_r Relative Permitivity: FR4 ca. 4.2
- ε_0 Vacuum Permittivity: 8,85 × 10⁻¹² $\frac{As}{Vm}$

Example PCB 112x80 mm (d = 100 µm):

$$C = \frac{0,009m^2}{100 \times 10^{-6}m} \times 8,85x10^{-12} \times 4.2 = 3,3nF$$

Impedance of a VCC/GND Layer System

PCB Layers as two-dimensional conductor planes

Simulated Impedance of the Vcc/GND System of a PCB 112mmx80mm

ARRANGEMENT OF TRACES & VIAS

Single Vias vs Grouped Vias

Ground Connection @ IC Pins

WE eiSos

Single Vias vs Grouped Vias

Example: 10x 100nF MLCCs, VNA Measurement

Single Vias vs Grouped Vias

Example: 10x 100nF MLCCs, Oscilloscope Measurement

Filter Capacitors

General Considerations

- For all capacitive Filters a low impedance connection to reference potential is key
 - For DM: (A/P) Ground
 - For CM: Earth / Chassis
- Additional Impedances decrease efficiency of RF short
 - THT contact pins
 - Inductance of PCB traces

Differential Mode Short

Common Mode Short

- 1nH per 1mm
- 0.5nH per Via
- Placement connection of steel spacers

Local Supply Loop

Routing to Ground and Supply Pins

Bad Connecting the Cap using stubs

Good Directing current along Capacitor pads

Better GND Plane to account for loops inside the IC

Local Supply Loop

Routing to Blocking Capacitors & Vias

Routing to Blocking Capacitors & Vias

Comparison of standard vs BGA style connection of 3xMLCCs in parallel (2.2µF + 330nF + 68nF)

Routing to Blocking Capacitors & Vias

Comparison of standard vs BGA style connection, Oscilloscope Measurement

Layout: Influence on Insertion Loss

0805, Bad Layout

0805, Good Layout

Layout: Influence on Insertion Loss, Oscilloscope Measurement

0805, Bad Layout

0805, Good Layout

Layout: Influence on Insertion Loss

0805, Bad Layout

0805, Good Layout

Size and Via Count: Influence on Insertion Loss

Blocking Capacitors

Routing to Ground and Supply Pins

- RF Currents are fed from the Capacitor
 - Vcc/GND Plane only see low frequency currents
 - Keeps magentic loop for RF as small as possible
 - Distance of Cap to PIN ≤ 0,3mm
- Low impedance connection to the capacitor
 - Keep lines symmetrical (if possible)
- Parallel Vias reduce impedance to GND/Vcc planes

Simulation Einfügedämpfung über Frequenz

Via Anzahl

Anzahl	L / nH	ΔL / %	-20 Dr. Franz - Störungssicherer Aufbau elektronischer Schaltungen, 5. Auflage, S.111f
1	1,538	-	
2	1,240	-19,4	-30
3	1,176	-23,5	
5	1,171	-23,9	B -40
0	000		-50 -60 -70 10 MHz 20 MHz 30 MHz 40 MHz 50 MHz

Frequency

Parallel Vias

Discussion: Arrangement of Vias

What is the best way to arrange Vias (theoretically)?

Caps vs. T-Filter: Influence on Insertion Loss

0603, with Ferrite

0603, without Ferrite

<u>GROUNDING</u>

Filter Placement

Diverting Noise to Earth

- Grounding studs have to placed so that disturbances don't affect the electronic parts
- Reference ground for ESD (and common mode noise) is earth potential

Capacitive Coupling over Heatsink

High du/dt common mode currents through parasitic capacitances

Conducted Emissions on a Flyback Converter

Heatsink bonded to reference potential

POWER INDUCTORS

Orientation of a Power Inductor

Keeping the Hot Node as small as possible

- Power Inductors with more than one layer of windings usually have marking indicating the start of winding
- Start of winding should be facing the Hot Node, so outer winding can act as a self shielding
- Even for Inductors with only one layer, orientation can make a difference (Height of terminal)
- Not every Inductor has a distinct start of winding due to the production process (e.g. Rod Cores)

Traces below Power Inductors

Bottom side of Power Inductors is not shielded

bad

good

Conductive Plane below Power Inductor

Influence on Inductance

Distance between Inductor and Conductive Plane

Conductive Plane below Power Inductor

Layout Options

Continuous GND Plane

Opening in GND Plane

Aarking

WE elSos

- + Shielding the electric Near Field
- Eddy Currents affect Inductance

- + Reduced Eddy Currents
- Radiated Noise through PCB

Tradeoff - GND Grid

- + Reduced Eddy Currents
- + Reduced radiated Noise
- Increased Layout Efforts

CRYSTALS & OSCILLATORS

Quartz Crystals

Crystal Oscillators

<u> π -Filter for RF Decoupling</u>

For Crystal Oscillators @ 50MHz

