DIGITAL WE DAYS 2023

ELECTROMAGNETIC SHIELDING – BASICS & SOLUTIONS FOR DEVELOPERS

WURTH ELEKTRONIK MORE THAN YOU EXPECT

TODAY'S SPEAKERS

PRESENTATION Steffen Schulze Field Application Engineer

MODERATION Silas Zorn Marketing Department

INFORMATION ABOUT THE WEBINAR

You are muted during the webinar.

However, you can ask us questions using the chat function.

Duration of the presentation 30 Min Q&A:

10 – 15 Min

Any questions? No problem! Email us

digital-we-days@we-online.com

Please help us to optimize our webinars!

We are looking forward to your feedback.

On our channel And on

Würth Elektronik Group Digital WE Days 2023 YouTube Playlist

AGENDA

- Introduction
- Basics
- Apertures
- Shielding Solutions

INTRODUCTION

What does "electromagnetic shielding" mean?

Unintended Antennas

- Electromagnetic fields are transmitted from or received by electrically conducting structures.
- Unintended antennas can be:

Cables, interfaces, apertures

Traces, groundplanes, vias, slits

Components, heatsinks, integrated circuits

Wavelength

Relation between frequency and wavelength:

$$\lambda_0 = \frac{c_0}{f}$$
Examples:

$$f = 500 \text{kHz} \rightarrow \lambda_0 = 600 \text{m}$$

$$f = 8 \text{MHz} \rightarrow \lambda_0 = 37,5 \text{m}$$

$$f = 100 \text{MHz} \rightarrow \lambda_0 = 3 \text{m}$$

$$f = 2,45 \text{GHz} \rightarrow \lambda_0 = 12,5 \text{cm}$$

•//

Half-wave Dipole

- A conductive structure is not a **good antenna** for each frequency.
- The **ratio** of the structure length to the wavelength is crucial.
- There is an **optimal** ratio if the structure length is equal to **half of the wavelength** (half-wave dipole).
- Signifikante Antennenwirkung tritt bei einer Länge von bis zu einem **Zwanzigstel** der Wellenlänge auf.

Wave Impedance

Shielding Against Electric Fields

- Electric fields can be **shielded easily**.
- Electric field lines start and end on **charges**.
- It has to be assured that free charges can **balance** themselves.
- Shielding effect of **electrically conductive connected plates** on a static electric field:

Shielding Against Magnetic Fields

- Magnetic fields are **difficult to shield**, specifically static and low-frequency fields.
- Categorization of countermeasures:
 - Against static and low-frequency fields → **Highly permeable** materials
 - Against medium-frequency fields → Usage of the skin effect
 - Against high-frequency fields → **Reflection** and **absorption**

Shielding Against Magnetic Fields

- In order to suppress static and low-frequency magnetic fields (16²/₃ Hz, 50/60 Hz), **highly permeable** materials are used.
- The shielding effect increases
 - with higher permeability,
 - with higher shield thickness,
 - with smaller volume.

Material	Relative permeability $\mu_{ m r}$	
Nickel	100	
Steel	1000	
Stainless steel	500	
Mumetal	25000	

Siemens Healthineers

Theoretical Shielding Attenuation

<u>APERTURES</u>

APERTURES

Dimensions

- The determination of the shielding attenuation by **means of measurement** is limited to 120 dB.
- There is no real shield which is perfect, i.e. completely closed.
- **Apertures** in the shield have a stronger impact on the magnetic than on the electric shielding attenuation.
- The **maximum linear dimension** of an aperture is crucial, not its surface area.

APERTURES

Dimensions

- An aperture with length $\ell = \lambda/2$ has the same effect as a **half-wave dipole**.
- If the electric field vector is oriented perpendicular or the magnetic field vector parallel to the aperture, the shielding attenuation at that frequency is 0 dB.
- If a larger window is required, e.g. for ventilation, the area should be distributed over many smaller holes.

APERTURES

Dimensions

• Maximale Schlitzlänge für 20 dB Schirmdämpfung:

Frequenz in MHz	Länge in cm	
30	50	
50	30	
100	15	
300	5	
500	3	
1000	1,5	
3000	0,5	
5000	0,3	

Reduktion der Schirmdämpfung bei n > 1:

n	$\Delta A_{\rm S}$ in dB	
2	-3	
4	-6	
6	-8	
10	-10	
20	-13	
40	-16	
80	-19	
100	-20	

Overview

Slots, Seams, Transitions

- At transistions in the housing (edges, seams) the **connection area** should be **as large as possible** and **conductive**.
- Slots without a conductive connection:

Slots, Seams, Transitions

- Conductive textile gaskets consist of a sponge core with a nickel-copper fabric wrapped around. On one side a double-sided adhesive is attached.
- Flammability:
 - UL94 V-0
 - DIN EN 45545-2:2020 → R22/R23
- -40...85°C
- <u>Application examples:</u>

Slots, Seams, Transitions

• Material combination table:

Base material	Nickel-copper	Aluminum
Zinc		++
Aluminum		++
Copper	+	_
Tin	+	_
Nickel-silver	+	-
Lead	+	_
Nickel	++	
Silver	++	
Nickel-copper	++	
Gold	++	

Slots, Seams, Transitions

- Conductive **elastomer gaskets** are used if a higher IP rating is required.
- -50...150°C

Slots, Seams, Transitions

- **Contact spring gaskets** are made of copper-beryllium or stainless steel.
- -40...120°C
- <u>Application example:</u>

Cables

• Shielding of cables and cable bundles:

• Avoidance of pigtails is crucial:

Interfaces

Filtered D-Sub interface for RS-232, RS-485 or power supply (max. 5 A @ 100 V_{DC}):

• D-Sub filter adapter:

Board Level

- Copper **groundplanes** are a useful shield against electric fields.
- Local shielding by means of **metal cabinets** for sensitive or noisy circuits

• <u>Important</u>: The cabinet must be connected with a **low impedance** to the local circuit ground.

Board Level

• One-pice or two-piece (frame + cover) cabinet:

• SMT clips:

Board Level

- Do-it-yourself metal sheet:
 - Tinned steel (0,2 mm)
 - Square-shaped grid (5 mm)

Board Level, Housing

- Flexible absorber sheet with adhesive layer for attaching to the PCB or housing
- Effect → Reflection and absorption in the near electric and magnetic field and in the far field

Board Level, Housing

• Complex permeability of all **WE-FAS** materials:

Frequency in MHz

Board Level, Housing

• Transmission loss depending on the **material** (thickness: 0,3 mm):

Board Level, Housing

Transmission loss depending on the **material thickness** (material 324; 0,1...1 mm):

Near Field Communication Standards

- Flexible ferrite sheet with adhesive layer for attaching to the PCB or housing
- Effect → Reflection in the near magnetic field, deflection of the field lines
- Applications → Near-field magnetic shielding, NFC, RFID, wireless power transfer (WPT)

Near Field Communication Standards

• Complex permeability of all **WE-FSFS** materials:

Heatsinks

• Flexible ferrite foil with ceramic particles for additional heat transfer ($\kappa = 1,4 \text{ W} \cdot \text{m}^{-1} \cdot \text{K}^{-1}$)

- Conductive housing parts and PCB groundplanes are to be connected by means of a **low impedance path**.
- Mechanical variants:

- Surface mountable **contact springs** made of copper-beryllium (gold-plated) or phosphor-bronze (nickel-plated)
- Plating options:
 - Au: 38...406 nm
 - Ni: 0,1...0,5 μm
 - Sn: 0,8...2 μm

- Contact springs lose their elasticity when **over-compressed**.
- Special designs prevent over-compression.
- Maximum permissible current: 20 A

- Surface mountable foam gasket block with plating (tin, gold)
- Can be used like a contact spring
- Optimal compression: 20...70%

We are here for you now! Ask us directly via our chat or via E-Mail.

digital-we-days@we-online.com Steffen.Schulze@we-online.de

