DIGITAL WE DAYS 2023

EFFICIENT HF SIGNAL TRANSPORT OVER SMA CONNECTORS

WURTH ELEKTRONIK MORE THAN YOU EXPECT

TODAY'S SPEAKERS

PRESENTATION Remco van de Griendt Field Application Engineer **MODERATION** Silas Zorn Marketing Department

INFORMATION ABOUT THE WEBINAR

You are muted during the webinar.

However, you can ask us questions using the chat function.

Duration of the presentation 30 Min Q&A: 10 – 15 Min

Any questions? No problem! Email us

digital-we-days@we-online.com

Please help us to optimize our webinars!

We are looking forward to your feedback.

On our channel And on

Würth Elektronik Group Digital WE Days 2023 YouTube Playlist

AGENDA

- EM Wave basic
- Trace impedance basic
- TDR
- Influences EM waves
- Real measurements

EM WAVES LOSSES

Insertion loss – S21:

- radiation loss
- reflection loss
- absorption loss
- Joule loss (Ri²)

R - Z - ZC?

E: electric field (Vm⁻¹) H: magnetic field (Am⁻¹)

PERMEABILITY

Material permeability Air Magnetic field (or ceramic) MnZn Fe $Z_{C} = \frac{1}{H}$ NiZn $Z_c =$ $\mathcal{E}_0 \cdot \mathcal{E}_r$ Iron powder Rod core ferrite Al Air water Plastic Cu μ_0 : vacuum permeability (H·m⁻¹) vacuum μ_r : relative permeability

Relative

 μ_r

300~20 000

~5 000

40~1500

50~150

~1

~1

~1

~1

~1

1

 $ε_0$: vacuum electrical permittivity (Fm⁻¹) $ε_r$: dielectric relative permittivity

Material	Relative permittivity E _r
Vacuum	1
Air	≈1
PTFE (Teflon)	2.1
PET	2.3
Roger (RO4003)	3.6
FR4	4.5
PVC	5
glass	≈5 to 7.5
water	≈80 (at 20°C)

$$\mathbf{Z}_{c} = \sqrt{\frac{R + j\omega L}{G + j\omega C}}$$

$$\omega = 2\pi f$$

f →0 Hz

$$Z_c = \sqrt{\frac{R}{G}} = R$$

TRACE IMPEDANCE

TRACE IMPEDANCE

PLANAR TRANSMISSION LINES

$$Z_c = \sqrt{\frac{L}{C}} \qquad \qquad C = \varepsilon_0 \cdot \varepsilon_r \cdot \frac{w \cdot l}{h}$$

Line impedance depends on:

- **w** = Trace width
- ε_r = Dielectric constant of the core/prepreg
- **G** = Gap between trace and ground
- **h** = Height of the core/prepreg •

h

S PARAMETERS

Factor of reflection and throughput:

> S-Matrix:

- \succ S_{ii}: Reflection at Port i
- \succ S_{jj} : Insertion losses from Port i to Port j

Power domain!

Mostly given in dB:

≻e.g.
$$-3dB = 10 \times \log(0.5)$$

Signal power-50%

Calculation from source:

- \geq 1000 mW \times 0.5 = 500mW
- > 30dBm 3dB = 27dBm

S PARAMETERS: VSWR

> Voltage standing wave ratio (VSWR):

> Voltage domain!

TIME DOMAIN REFLECTOMETRY

> Wave impedance measurement through a system

TIME DOMAIN REFLECTOMETRY

TYPICAL LAYER SETUP

2-Layer		
Height	1.55 mm	
Prepreg + core	FR4	

Low production cost

> Mostly no separate GND-Plane

4-Layer		
Height	1.55 mm	
Prepreg + core	FR4	

Good for RF-Designs

- > Separate GND-Plane
- Dielectric differs

PLANAR TRANSMISSION LINES

- Wider line width
- Antenna fed-line

DIGITAL WE DAYS OBTOBER 16, 2023

18

- No Ground on RF-Layer
- Line width depends on
 substrate height and εr

- Smaller line width
- Ground connection to components
- > Various planar matching designs
- Line width depends on
 substrate height. εr and gap width

RADIATION - WAVE GUIDE LOSSES

Microstrip : middle losses

Ground coplanar: low losses

H F

Coax: very low losses

FIELD DISTRIBUTION

Component Abs Frequency 2.4 GHz Phase 0 Cross section A Cutplane at X 0.000 Maximum -2.56937 dB

OVERVIEW PCB STRUCTURES: TIPS & TRICKS

Solder-Resist free

> Solder resist:

- Increases loss
- > Adds dielectric
- Remove solder resist from:
 - ➢ RF-Line and
 - Near Ground-Plane

OVERVIEW PCB STRUCTURES: TIPS & TRICKS

Via Fence

Via center distance ~ $\lambda/10$

Field captured between GND

- Reduces coupling
- ≻ Less loss

Stabilized ground planes

COMBINATION CONNECTOR & PCB: EXAMPLES

CPWG - Round: Design

- > Solder pads & several vias
- Very good GND connection
- Optimized RF-Line with tapers

COMBINATION CONNECTOR & PCB: EXAMPLES

CPWG - Round: Design - DGS

> Defective Ground Structure: matching structure -> decreases parasitic capacitance

Initial without tin

Straight trace No impedance adjustment

No tin

Initial without tin

Straight trace No impedance adjustment

Round shape without DGS with tin

Ground layer adjustment Round shape

Tin

DIGITAL WE DAYS OBTOBER 16, 2023

Round shape without DGS with tin

Ground layer adjustment Round shape

Tin

DIGITAL WE DAYS OBTOBER 16, 2023

28

Adjusted shape without DGS with tin

Ground layer adjustment Adjusted shape

Tin

Adjusted shape without DGS with tin

Ground layer adjustment Adjusted shape

Tin

DIGITAL WE DAYS OBTOBER 16, 2023

30

ROHDE&SCHWARZ

\//

Adjusted shape with DGS with tin

Ground layer adjustment Adjusted shape

Tin + DGS

Adjusted shape with DGS with tin

Ground layer adjustment Adjusted shape

Tin + DGS

DIGITAL WE DAYS OBTOBER 16, 2023

32

We are here for you now! Ask us directly via our chat or via E-Mail.

digital-we-days@we-online.com Remco.VandeGriendt@we-online.de

