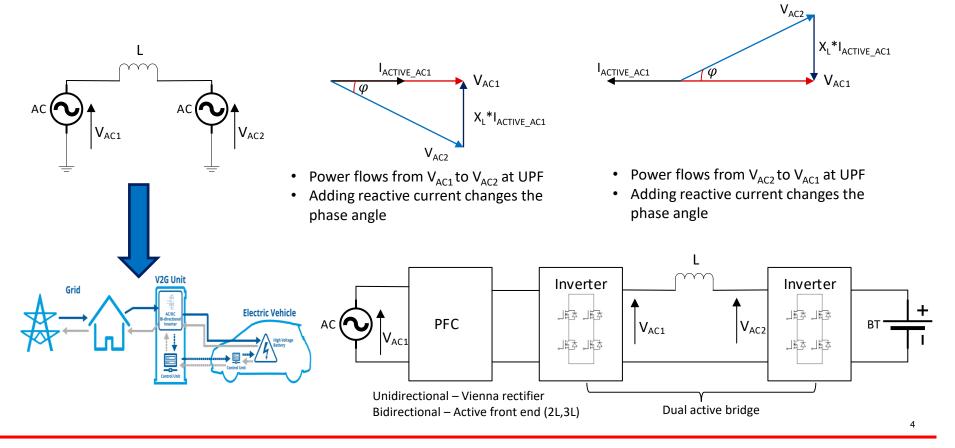
Designing efficient EV charging systems with C2000[™] real-time MCUs

Agenda

- EV chargers overview
- DC/DC : Dual active bridge
- C2000 PWM
- AC/DC: Vienna rectifier, ANPC PFC
- C2000 Overview

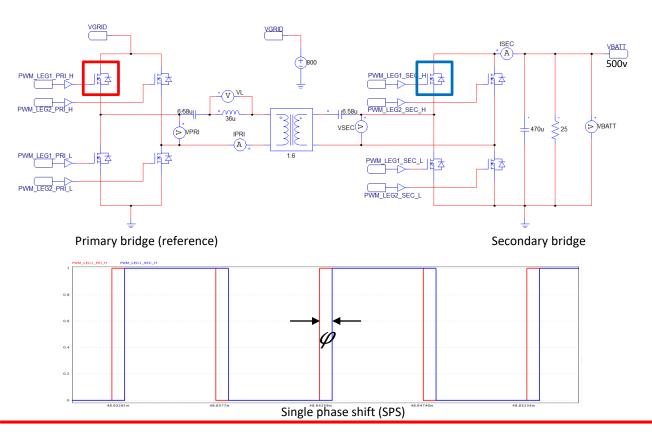
EV charging

DC fast charger


50-150kW+ charging station

- + Offers filling gas like experience for EVs
- Modular architecture made up of multiple racks of 25-50kW AC:DC & DC:DC power modules
- + Can support V2G
 - Cost
- Needs infrastructure power line upgrade

V2G: Bidirectional power flow concept



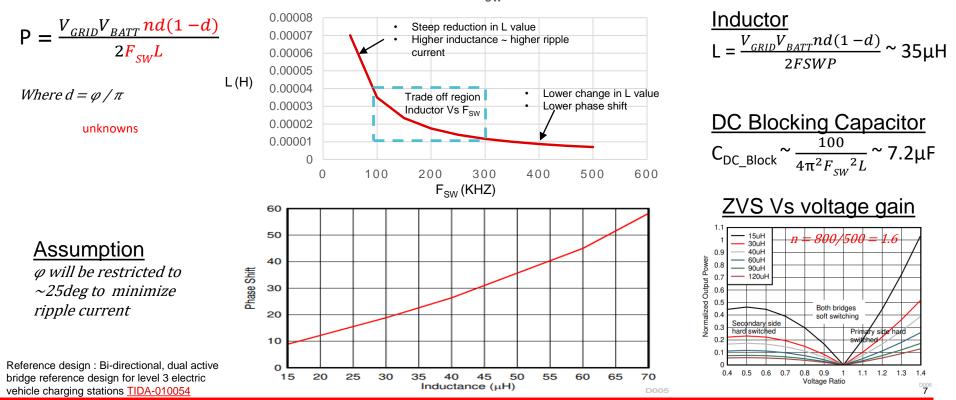
Agenda

- EV chargers overview
- DC/DC: Dual active bridge
- C2000 PWM
- AC/DC: Vienna rectifier, ANPC PFC
- C2000 overview

Single phase shift - Dual active bridge (DAB)

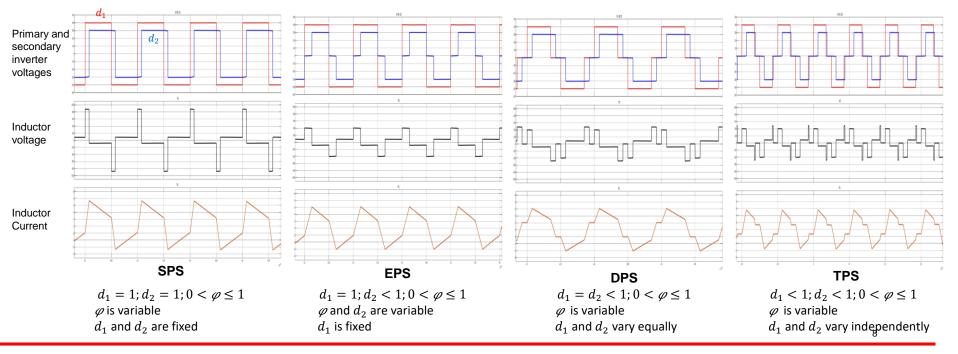
$$\mathsf{P} = \frac{V_{GRID}V_{BATT}n\varphi(\pi - |\varphi|)}{2\pi^2 F_{SW}L}$$

n = transformer turns ratio $\varphi = phase shift between the bridges$ π, φ are in radians


$$\mathsf{P} = \frac{V_{GRID}V_{BATT}nd(1-d)}{2FSWL}$$

Where $d = \varphi / \pi$

DAB : Simplified design considerations


L VS F_{SW}

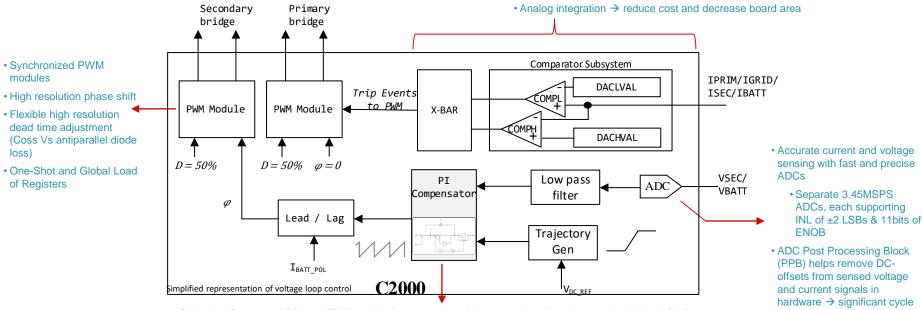
TEXAS INSTRUMENTS

Multi-phase shift DAB

- DAB when operated away from unity voltage ratio and rated power, the SPS control technique leads to low efficiency, high RMS and peak currents.
- Dual phase shift and triple phase shift controls make DAB more efficient

HR-phase shift and synchronization

- *φ* -> 0 to ~25deg controlling 10KW Output power
- 0 to ~25deg at 100KHz corresponds to ~690nsec
- PWM module operating at 100MHz can have a resolution of 10ns
- *Minimum adjustable output power = 10KW * 10/690 ~ 145W*
- Its not uncommon to have single DAB power module rated for 50KW
- C2000 real-time MCU
 - With high resolution phase shift of 150ps enables finer control
 - Up to 16 high resolution PWM channels
 - Synchronization of multiple ePWM modules controlling intra and inter bridge phase shifts



Controlling DAB with C2000

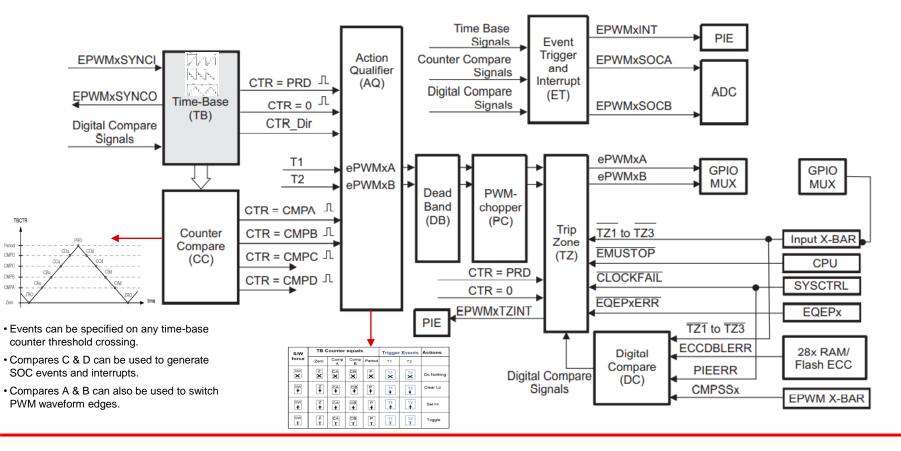
PWM -

PWM -

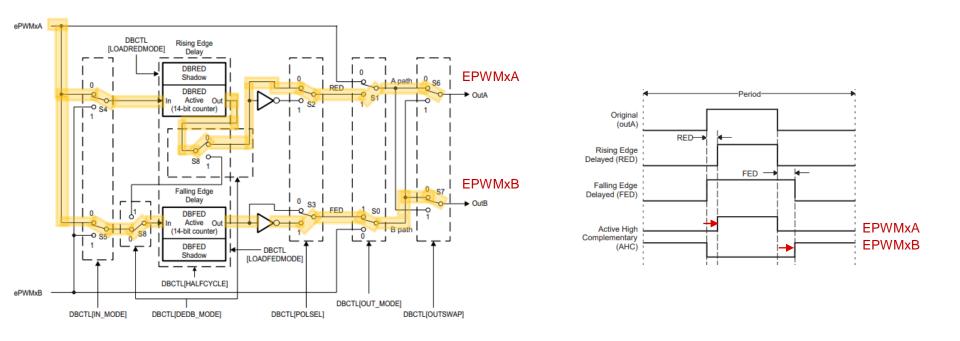
- Built-in analog comparators against a 12bit DAC with 50ns pin-to-pin response time → enable real-time system protection against over-current & over-voltage events
- Trip any or all PWMs asynchronously to the system clock and independently from processing bandwidth

- Optimized C28x core, CLA and TMU enable fast execution of the control loop for advanced multiphase DAB
- FPU unit built in \rightarrow no more coding concern of scaling, overflow/underflow
- C2000 MCU with TMU can execute trigonometric & division operations, such as a "sine" instruction in 4 pipelined cycles. This compares with up to 41 cycles on an MCU without TMU → ~10x performance improvement
- PLLs or software algorithms that use transforms benefit greatly from the TMU

CLA – Control law accelerator TMU – Trigonometric math unit

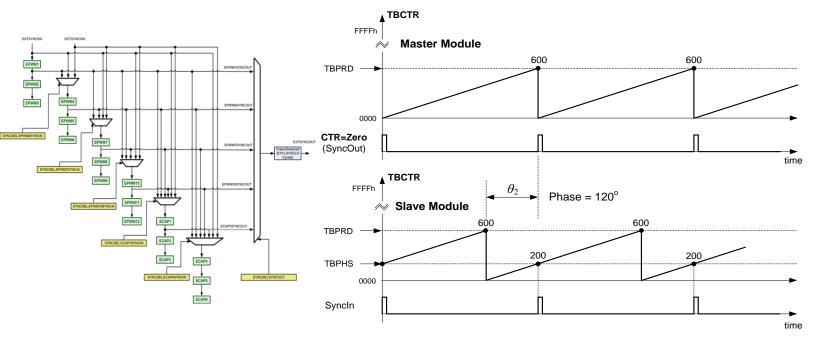


savings


Agenda

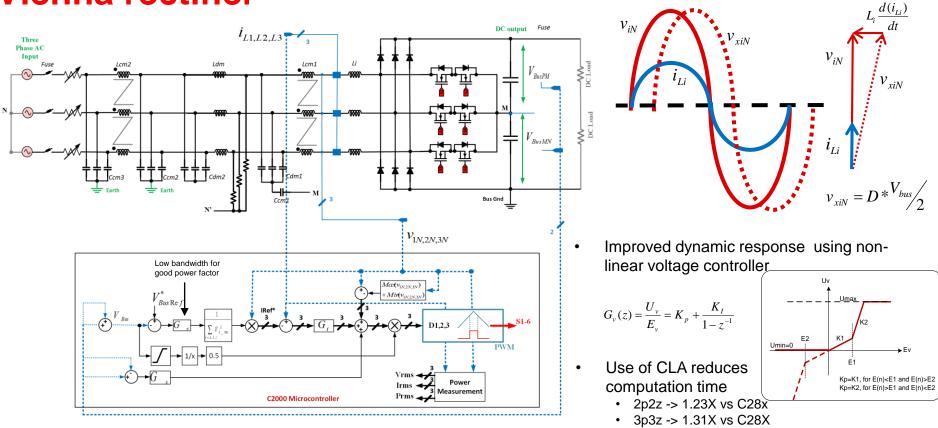
- EV chargers overview
- DC/DC: Dual active bridge
- C2000 PWM
- AC/DC: Vienna rectifier, ANPC PFC
- C2000 overview

C2000 Type-4 PWM module



C2000 dead-band submodule

ePWM phase shift and synchronization

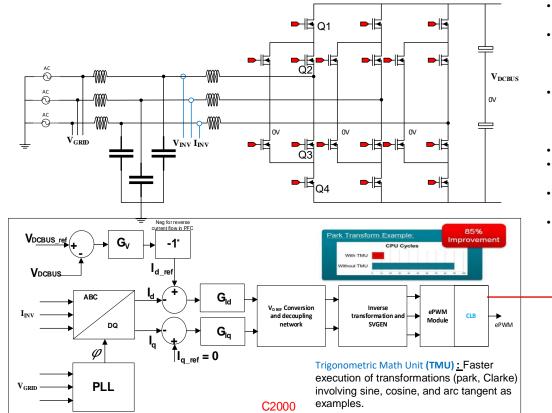


- Phase is controlled between PWM modules by synchronizing time-base counters.
- In this example, PWM1 generates a SyncOut pulse on a CNT = Zero event. PWM2 receives the pulse at its SyncIn terminal and loads a phase offset of 200 into its TBCTR.

Agenda

- EV chargers overview
- DC/DC: Dual active bridge
- C2000 PWM
- AC/DC: Vienna rectifier, ANPC PFC
- C2000 overview

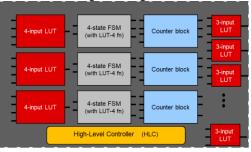
Vienna rectifier



Reference design : Vienna Rectifier-Based, Three-Phase Power Factor Correction (PFC) TIDM-1000

16

ANPC – Inverter / PFC

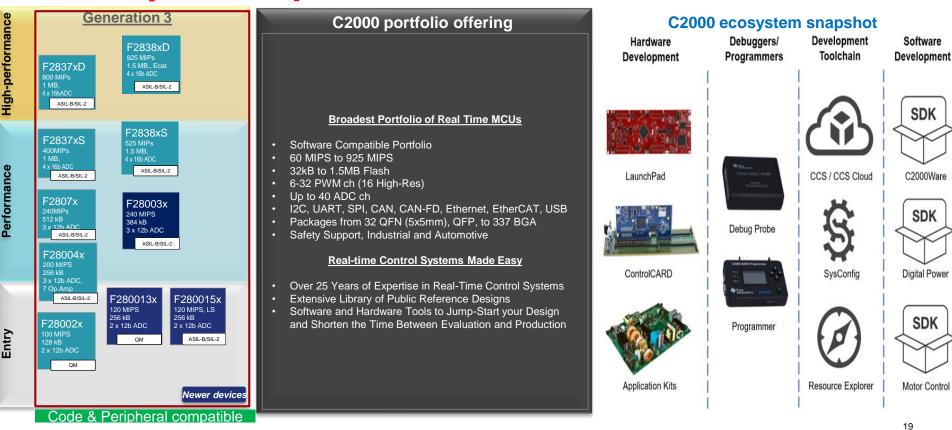


Reference design : 11-kW, bidirectional, three-phase ANPC based on GaN reference design TIDA-010210

- Outer switches (Q1/Q4) need to turn OFF before turning OFF the inner switches (Q2/Q3)
- Positive cycle
 - Q2 should never be turned off if Q1 is still ON
 - Q1 should be turned OFF first and then Q2 after a defined delay

Negative cycle

- ✓ Q3 should never be turned off if Q4 is still ON
- Q4 should be turned OFF first and then Q3 after a defined delay
- Shutdown sequence need to be followed under trip conditions
- Software algorithm causes too much delay to provide in-time protection
- Use of external hardware circuits, like FPGA or CPLD increases system cost and development cost
- Built-in Configurable logic block within C2000 lowers system cost by enabling shutdown sequence


Configurable logic block

Agenda

- EV chargers overview
- DC/DC: Dual active bridge
- C2000 PWM and ADC
- AC/DC: Vienna rectifier, T Type PFC
- C2000 overview

C2000[™] product portfolio

C2000[™] F28003x

Differentiation

Building on F28002x for High-Performance Power Control Applications Improved performance

- 120 MHz with CLA option
- 240 MIPS DSP Processing Power
- More Flash and RAM
- Better ADC Performance Effective throughput

Advanced actuation and design flexibility

Premium Type 4 ePWM modules with more instances and channels

Premium analog

- 8 Sigma Delta Decimation Filters (with separate Data and Comparator filters)
- 2 * Buffered DAC 12-bit , +1 * 12 bit ADC @ 3.45MSPS

Rich digital options

CAN-FD, +2 * CLB tiles, +1 * SCI

Safety

· ASIL-B/ SIL-2 safety enablers

Security

• AES, JTAG Lock & Secure boot

Perfect portfolio

- Pin-pin to F28002x 64-pin (non-Q) and 80-pin(non-Q) and almost compatible to 48-pin and 64-pin (Q)
- 100-pin option

Tools

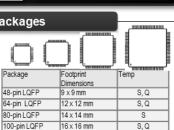
Experimenter's Kit

Part Number: TMDSCNCD280039C https://www.ti.com/tool/TMDSCNCD280039C LaunchPad

Part Number: LAUNCHXL-F280039C, 2Q22

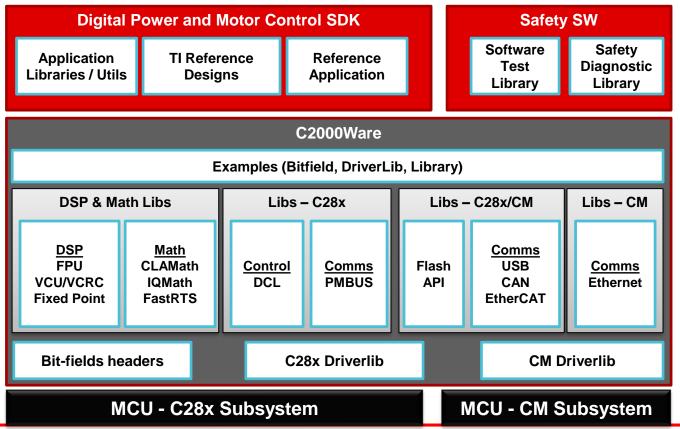
Software

C2000Ware™ Software


Application SDKs

Package

http://www.ti.com/product/TMS320F280039C


Sensing	Processing	Actuation	
ADC1: 12-bit, 4 MSPS,	C28x™ DSP core	8x ePWM Modules 16x Outputs (8x High-Res) Fault Trip Zones 2* 12-bit Buffered DAC	
ADC2: 12-bit, 4 MSPS	120 MHz		
ADC3: 12-bit, 4 MSPS	FPU, FastDIV, VCRC		
4x CMPSS : 12-bit DAC	TMU +NLPID		
8 COMP, 8 digital filters	CLA core	Connectivity	
8x Sigma Delta Channels (2x Filters per ch)	120 MHz, FPU	2x SCI, 2x LIN/SCI	
Temperature Sensor	6ch DMA	2x I2C, 1x PMBus 2x SPI, 1x FSI-TX , 1x FSI-RX 1x CAN-FD, 1 CAN 2.0B	
2x eQEP			
3x eCAP , 1x HRCAP	BGCRC & HWBIST		
	Memory	Power & Clocking	
Configurable Logic Block	384 kB FLASH (3 bank) +ECC	2x 10 MHz OSC	
4 Tiles	69 kB SRAM +ECC	1.2V VREG	
	ROM with parity	POR/BOR Protection Debug	
System Modules	Dual Security Zones		
3x 32-bit CPU Timers	Secure boot and JTAG lock		
NMI Watchdog Timer	AES	cJTAG / Real-time JTAG	
192 Interrupt PIE	Host Interface Controller (HIC)	ERAD	

Functional Safety Compliant Product		
Target Systematic Capability	ASIL-D/SIL-3	
Target Diagnostic Coverage (DC)	ASIL-B/SIL-2	

Software interfacing levels

Application-specific SDKs

- Reference SW to get started for Digital Power and Motor Control
- Libraries and utilities to get started

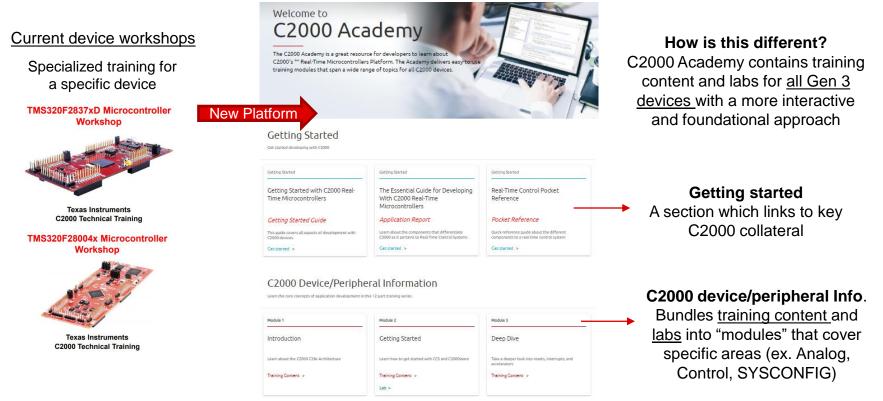
Safety software (SW)

- Reference SW to implement Safety manual mechanisms
- Production ready STL for C28x and CLA diagnostic coverage

C2000Ware examples

- Examples for peripheral access using driver-lib or bit-field
- Examples for compute and communication libraries

C2000Ware libraries


 Compute and Communication libraries for standard functions

C2000Ware driver lib / bit-field

 Functional APIs for using a peripheral or accessing hardware registers

C2000 Academy: overview

Dev.ti.com-> Resource Explorer -> Software -> C2000 Academy

22

EMC FILTERING ON EV CHARGING STATION

Angelo Strati Italian Technical Team @ angelo.strati@we-online.com 334-6054571

WURTH ELEKTRONIK MORE THAN YOU EXPECT

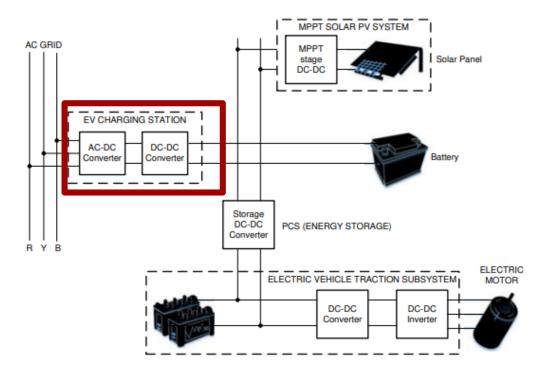
The Würth Elektronik Group

Würth Elektronik eiSos Electronic & Electromechanical Components

Würth Elektronik CBT Printed Circuit Boards

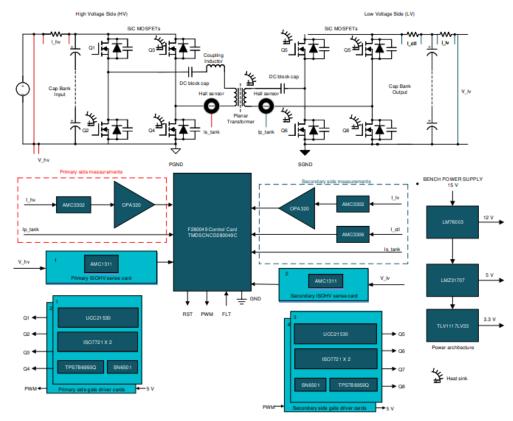
Würth Elektronik ICS Intelligent Power- and Control Systems

Free Technical Support

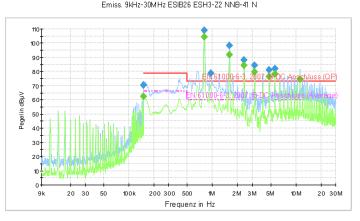

- Possibility to agree on the presence of a FAE during the EMC tests in the laboratory
- Realization of free in-House seminars at your headquarters or in video-conference on different topics (EMC, ESD, DC / DC filtering, selection of inductors ...)
- Support in the selection of components for your application
- Sending of free samples for the prototyping phase and / or the EMC test phase
- Possibility to request on-site presence for project support

Agenda

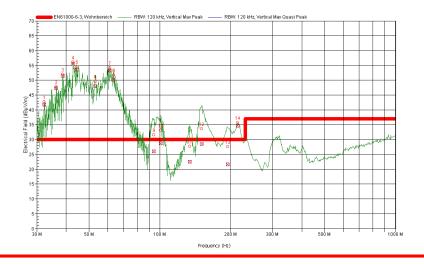
- EV Charging Station with C2000
- Sources Of Interference
- Filtering Components



EV Charging Station Scheme


Sources Of Interference

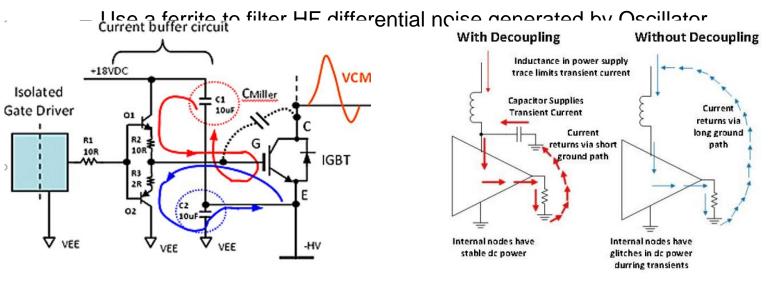
- PWM Drive
- Control Logic and Oscillator
- Interfaces
- Switching Regulator
- Layout
- Wiring


Wired Interference – Conducted Emission

- Cause of the interference voltage of 150kHz ... 30MHz:
 - Ripple current on the supply side
 - Rise/fall time controlled by gate drive
 - Interference current via parasitic coupling capacitances to ground (common mode)
- The unbalanced voltage sampled per phase contains symmetrical and asymmetrical components.
- Limit value for the asymmetrical interference voltage, e.g. according to EN 61000-6-3

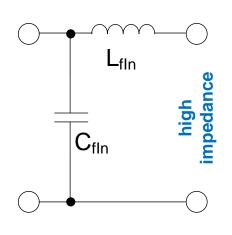
Noise Emission – Radiated Emission

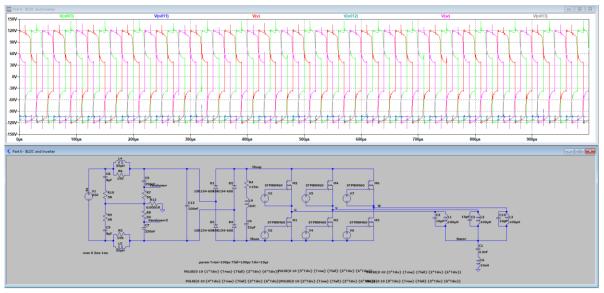
- Cause for the interference field strength of 30MHz ... 1 (6) GHz:
 - Noise current on conductor tracks or loops
 - Noise current on conductive housings
 - Interference current on lines connected to interfaces
- Limit value for the radio interference field strength e.g. according to EN 61000-6-3

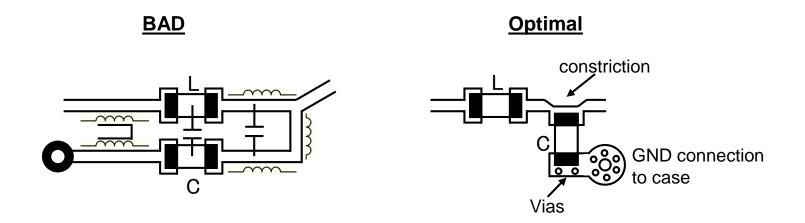


Overwiev Sources Of Interference

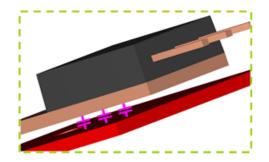
Type of Fault	Dominant Source	Frequency Range	Radiated or Conducted
Low Frequency Range	Fundamental and harmonics of the controller switching frequency	10kHz to 30MHz	Conducted
Broadband Interference	dI / dt and dU / dt of the FET (silicon) switching edges and parasitic resonant circuits	30MHz to 200MHz	Conducted and Radiated
High Frequency interference	Reverse Recovery of Schottky Diodes	Over 200MHz	Radiated

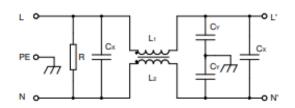

Differential Mode Interference: Filtering


- Minimizing the differential mode interferers by:
 - Placing a RF decoupling "C" close to the switching node
 - Keep high ΔI / Δt loops (loop antennas) compact → Minimization of H-fields


Differential Mode Interference: Filtering

- DM Filtering:
 - Input LC Filter to attenuate PWM signals (High repetitive pulse)
 - Rise/Time controlled by Gate Drive
 - Place the correct way: input impedance of the transducer is very low, normally mainly dominated by the one or two capacitors

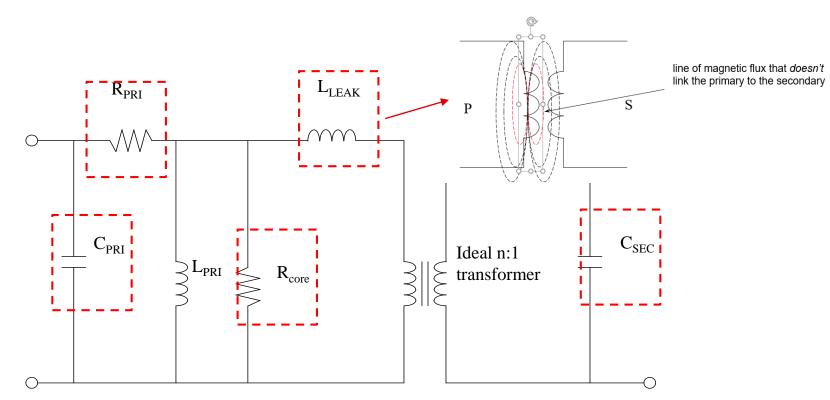

Layout Suggestions On Drive Board: GND Reference For Filter



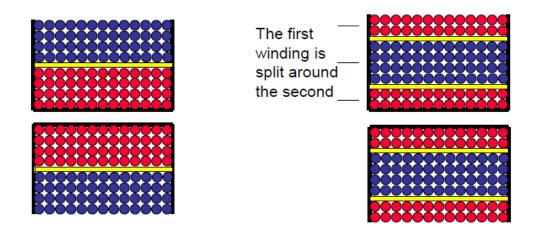
- Constriction reduces reflections (VSWR) in gigahertz range
- Right angle arrangement reduces capacitive coupling
- Vias and direct conductive board mounting enable low-impedance ground connection

Common Mode Interference: Common Mode Choke

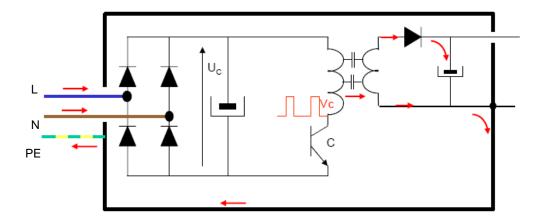
- Large common mode current paths due to the heat sink formation of HF capacitance
- These leads to problems with the Conducted & Radiated Measurement!
- Use Common Mode Choke and X or Y caps


FET : fsw to 20MHz

20.01.2023 Aux ACDC converter, what can we provide?

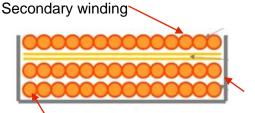

Converts the AC input to power up all the DC logic inside

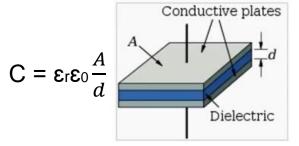
Parasitics – Transformer Standard Model



Leakage Inductance – Good Construction

To improve the coupling between the windings we can sandwich the first winding around the second. This reduces the average distance between the windings and results in 1/4th the original value of leakage inductance – at the expense of more winding labor.


Transformer for EMC : Cww

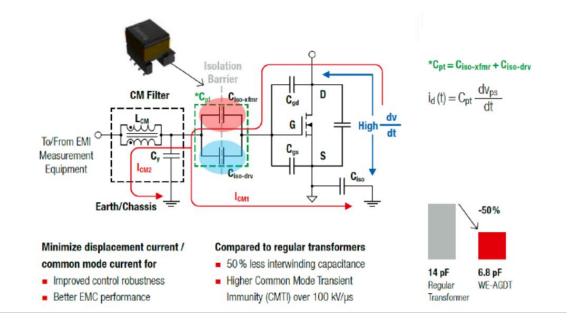

- Noise couples through the transformer via C_{ww}
 - Noise seeks path to primary circuit
 - Without path, noise may become conducted emissions

Reducing InterWinding Capacitance

How can we reduce the inter-winding capacitance

P-S boundary (usually layers of tape)

Primary winding


- Multi-section or Narrow bobbin
- · Lots of tapes and increase the insulation thickness on wire
- This will result in increasing the leakage inductance (we have to use Snubber to control it)
- Possibly reducing the electric constants using for example low dielectric varnishes or potting compounds on wires (Does not affect the leakage inductance)

Gate Drive Trasformer for SIC-

Isolation Barrier Parasitic Capacitance: Common-mode Transient Immunity (CMTI) and EMI Performance

Common-mode Transient Immunity (CMTI) (measured in kV/us or V/ns), is an indication of the maximum dV/dt which can be tolerated across the isolation barrier before malfunction of the gate driver system occurs, due to excessive distortion of the gate drive control signals.

- SiC-MOSFETs switch extremely fast, helping to increase efficiency and reduce system size and cost.
- Fast switching speed causes high dV/dt to appear across the isolation barrier parasitic capacitance (Gate driver IC and auxiliary supply transformer).
- Common-mode displacement currents are generated.
- A lower parasitic capacitance reduces these displacement currents, helping to achieve a higher CMTI rating and better EMI performance.
- It is critical to minimize the transformer interwinding capacitance in fast-switching SiC-MOSFET gate drive applications.

