

These design rules apply to:

Rigid multilayer with partially bendable, semi-flexible bending area. The PCBs have 1 or 2 copper layers in the deep milled area for an application according to IPC-2223 Use A: Flex-to-install.

Examples (shown without solder mask):

1Ri-3Ri: 1 layer in the bending area

Nomenclature: Ri = Rigid, F = Flex material is not used!

Basic instructions

- Please comply with general standards, such as IPC or IEC
- Please refer to the valuable hints and tips in our RIGID.flex Design Guide at <u>www.we-online.com/flex</u>.
- Please refer to our BASIC Design Rules for rules on conductor widths, spacings, via and pad sizes as well as solder mask at <u>www.we-online.com/basic</u>.
- Filling of PTHs (plated through holes):

Do not use open holes in solder pads! Keep at least 400µm distance from solder pads to holes to be plugged on both sides (Via plugging, IPC-4761 type III). For vias according to IPC-4761 type VII (filled and capped) please consult us for allowed design rules (conductor spacing)!

- Flex-to-install bending radii for FR4.0 Tg135: only installation bending load is permissible
 - o o 1 copper layer with multilayer: bending radius at least 4mm
 - o o 2 copper layers and 2-layer PCB: bending radius at least 5mm
- Bending direction: only allowed in the semi-flexible area with copper outside the radius (milled area inside bending!)
- Important hint for the assembly: a controlled pre-bending using a bending tool assuring the minimum bending radius prior to the final assembly is important to simplify assembly and to prevent damage!
- Note on drying before the soldering process: SEMI.flex PCBs can be processed like standard PCBs.
 Special drying is not necessary as no polyimide flex material is used.
- We will be happy to create the optimal delivery panel for you (best price!)

Material specifications

Material	Standard	Spec. sheet	Description	Application	
Rigid material	IPC-4101	21	FR4.0 Tg 135°C	Standard for SEMI.flex	
Soldermask	IPC-SM840		green, photosensitive	Standard in rigid areas	
Flexible	JIS C 5012/		green	Partially in the bending area	
soldermask	IPC-SM840			or over the entire areas	
Coverlay	IPC-4203	1/2	Polyimide coverlay,	Optional coverage of the	
			Acrylic or Epoxy- glue	flexible area (surcharge)	

Layer stackup

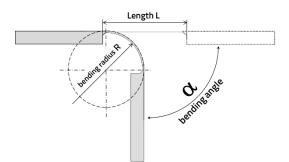
Do not use standard Multilayer stackup plans for SEMI.flex Technology. For each project, there is an individual stackup design to be created – please ask us!

Standard configuration

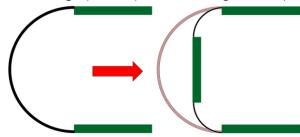
- 1. PCB total thickness 0,8mm to 1.55mm
- 2. Copper layer thickness inner layers 18µm, outer layers 12µm + electroplating
- 3. Photosensitive solder resist green in rigid areas, flexible soldermask green in bending area
- 4. Standard PTHs
- 5. Minimum milling diameter 1.6mm
- 6. Solderable surface ENIG (electroless nickel immersion gold)
- 7. Packaged in ESD shrink wrap

Combination with HDI Microvia- and Buried via - Technique possible:

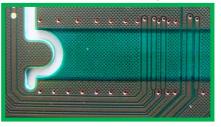
Follow the WE HDI Microvia Design Guide for Microvia and Buried Via design.

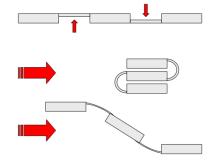


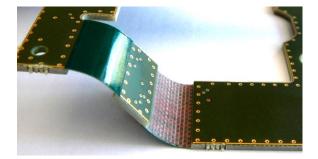
Recommendations for SEMI.flex design


Calculation of Length "L" for SEMI.flex area

Necessary length L of the bending area is: L = angle x radius R x Pi / 180° + 2 x 0.4mm (bevel Y)

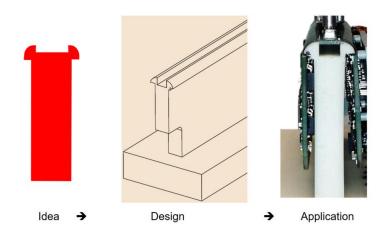

	Length L of the bending area				
	@ bending radius [mm]				
angle [°]	4	5			
45	3,9	4,7			
90	7,1	8,7			
180	13,4	16,5			

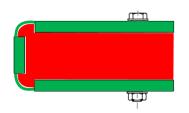

• <u>180° bending replaced by 2 x 90° with rigid middle part</u>



Fill up free areas in the bending area with hatched copper

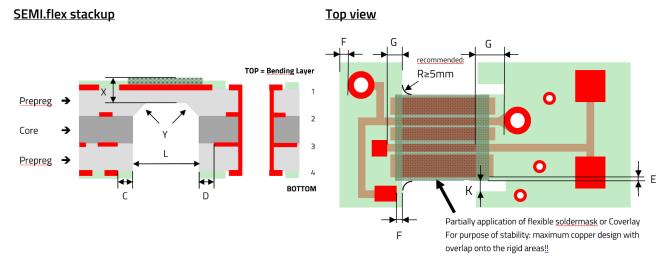
• Design S-shaped bend accordingly with milling from two side!





Recommendations for SEMI.flex assembly

• A defined pre-bending with the aid of a bending tool that ensures the minimum permissible bending radius facilitates housing assembly and prevents damage!


• "Mooring" radii in Housing or on Carrier to stabilize bending area

→<u>Attention</u>:

Bending is only allowed with bending area / copper outside in the bending area! ←

Symbol	Description	Standard requirements	Advanced requirements
	Only use of rigid material FR4.0, no flexible foils	Tg135°C	see BEND.flex
х	thickness of bending area incl. flexible soldermask/coverlay 1-layer:	typical 200µm ± 50µm	
X	(depending on layer stack and copper thickness) 2-layers:	➔ project specific layerstack	
Y	Bevel	0,4 x 45°	
С	Distance Copper on outer layer – outline of bending area (Bottom)	≥230µm	
D	Distance Cu on inner layers – outline of bending area	≥230µm	
E	Distance copper feature – outline of bending area	≥300µm	
F	Distance of exposed copper – outside of bending area	≥230µm	
C C	Distance exposed Copper – bending area (top) flexible soldermask	≥800µm	≥400µm
G	Coverlay Pl	≥1500µm	≥1000µm
К	Minimum width for "cut-in"	1.6mm	1.1mm
"K"	Outline manufacturing: No scoring allowed!		
L	Length of bending area: depending on bending angle	See also page -3-	
"L"	Bending area: for purpose of stability: maximum copper design	max. 200µm Insolation between Cu-structures	
"L"	Bending direction: copper on outer layer to tension	See also page -3-	
"L"	Minimum bending radius, 1 copper layer in bending area: 2 Layer PCB	5mm	Individual qualification
"L"	Minimum bending radius, 1 copper layer in bending area: Multilayer PCB	4mm	Individual qualification
"L"	Minimum bending radius, 2 copper layers in bending area	5mm	Individual qualification
"L"	Maximum quantity of bending cycles (@ minimum bending radius)	Typical 10	Individual qualification
-	Solder Finishes	ENIG, immersion Sn	
	Rules for line width/space, Via- and Pad-sizes, soldermask design	See BASIC Design Rules!	
-	Combination with HDI microvia- und buried via - technology possible	See HDI Microvia Design Guide!	

Enhanced specifications are possible on request – please ask us: <u>flex@we-online.com</u>