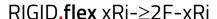

RIGID.flex xRi->2F-xRi

These design rules apply to:

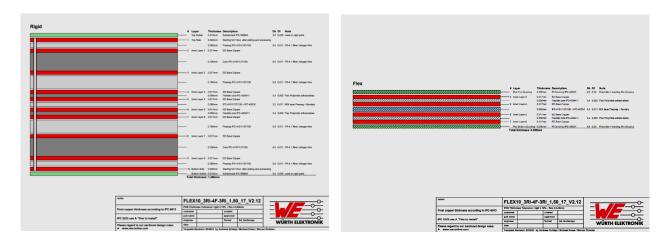
RIGID.flex PCBs with two or more copper layers, internally located on flexible polyimide foil material. Application in accordance with IPC 2223 Use A: Flex-to-install, UL marking according UL94 and UL796F possible.


Examples:

Nomenclature: Ri = Rigid, F = Flex

Basic instructions

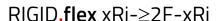
- Please comply with general standards, such as IPC or IEC
- Please refer to the valuable hints and tips in our RIGID.flex Design Guide at <u>www.we-online.com/flex</u>.
- Please refer to our BASIC Design Rules for rules on conductor widths, spacings, via and pad sizes as well as solder mask at <u>www.we-online.com/basic</u>.
- Filling of PTHs (plated through holes):
 - Do not use open holes in solder pads! Keep at least 400 µm distance from solder pads to holes to be plugged on both sides (Via plugging, IPC-4761 type III). For vias according to IPC-4761 type VII (filled and capped) please consult us for allowed design rules (conductor spacing)!
- Lift-off areas <u>attention</u>: NO copper layout below the flex and NO vias permitted in these areas!
- Flexible and rigid-flexible circuit boards must be dried before they are assembled. Further information about this is available at www.we-online.com/dryingprocess.
- Copper removal is required in ground or reference layers for drying.
 - o Recommendation: Copper openings 0.3 mm per 1 mm length of copper.
- Flex-to-install bending radius: Installation Use A in accordance with IPC-2223 up to 90 ° bending angle:
- 333
- 2 copper layers: 10 x total thickness (IPC-2223 section 5.2.3.3)
- More than 2 copper layers: 20 x total thickness (IPC-2223 section 5.2.4.3)
- For use in more demanding conditions, please contact us.
- We will be happy to create the optimal delivery panel for you (best price!).



Material specifications

Material	Standard	Spec.	Description	Application	
		sheet			
Flexible base	IPC-4202	11	Polyimide adhesive less	Standard	
material					
Rigid base material	IPC-4101	128	FR4.1 Tg 150 °C, filled;	Standard for RIGID.flex	
(cores, prepregs)			low-halogen, low CTE(z)		
LowFlow Prepreg	IPC-4101	128	FR4.1 Tg 150 °C	Standard	
Soldermask	IPC-SM840		green, photosensitive	Standard lacquer in the rigid	
				areas	
Coverlay, bond ply	IPC-4203	1/2	Polyimide coverlay or	Standard: Partially in the	
			composite films, acrylic or	flexible areas (also called	
			epoxy glue	"bikini")	

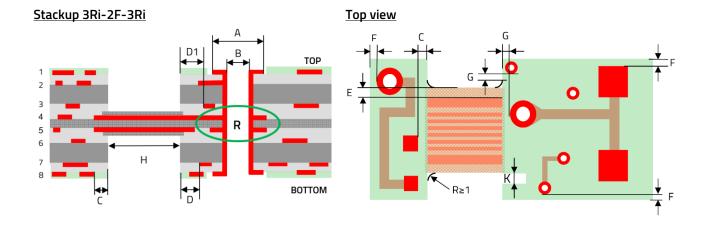
Standard Stackups


The standard stackups you will find under www.we-online.com/flex.

<u>Combination with microvia technique (from 2Ri-yF-2Ri) and buried via technique is possible:</u> See WE HDI Microvia Design Guide.

 <u>Buried vias</u> after consultation by modification of the stackup (additional costs due to additional multilayer process).

Please contact us, we will find a solution for your needs: flex@we-online.com.



Standard design

- 1. Flexible foil out of Polyimide 50 µm thick, adhesive less, ED copper on both sides
- 2. PCB total thickness 0.8 mm to 1.55 mm
- 3. Copper layer thickness on inner layers 18 µm, outer layers 12 µm + plated copper
- 4. Partial coverlay technique in flexible are (also called "bikini")
- 5. All rigid areas with standard solder resist green
- 6. Standard PTH (Plated Through Holes)
- 7. Smallest milling diameter 1.6 mm
- 8. Solderable surface ENIG
- 9. Packaged in ESD shrink wrap

RIGID.flex xRi-≥2F-xRi

Cumbal	Description	Technical	Advanced
Symbol	Description	Standard	requirements
	Line widths and spacings	see WE BASIC Design Rules!	
А	Minimum via pad diameter	see WE BASIC Design Rules!	
	→For all Pad-connections Teardrops are recommended!		
В	Final diameter of PTH	see WE BASIC Design Rules!	
R	→ NFP: Non functional / non-used pads do NOT remove!!		
С	Spacing, Cu – outer layer to flex-rigid transition (bottom)	≥300 µm	
D	Spacing, Cu – inner layer to flex-rigid transition	≥500 µm	
D1	Spacing, Cu – to flex-rigid transition: inner layers next to flex	≥1000 µm	
Е	Distance of conductor to the flexible contour	≥300 µm	
F	Spacing, exposed Cu – outside of flex-rigid transition	≥300 µm	
G	Flexible area 2F: Distance of via pad to flex-rigid transition	≥1500 µm	≥1000 µm
G	Flexible area >2F: Distance of via pad to flex-rigid transition	≥2000 µm	≥1500 µm
G	For your information: Recommendation in IPC-2223D 5.2.2.3:	3.18 mm+ ½ pad diameter	
Н	Length of the flex area with 2F (for > 2F please contact us)	≥5 mm	≥2.5 mm
	Airgap (2F+2F), typical	≥50 mm	-
К	Minimum recess width directly at the flex area	1.6 mm	1.0 mm
"K"	Outline manufacturing of flex area: No scoring permitted!		
"ZIF"	ZIF contacts thickness tolerance (material of stiffener)	\pm 0.05 mm (FR4)	± 0.03 mm (PI)
			special stackup
_	Combination with microvia (from 2Ri-yF-2Ri) and buried via	see HDI Microvia Design Guide!	
	technique is possible		

Further specifications available on request, please contact us: flex@we-online.com