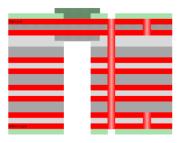
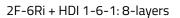


These design rules apply to:


RIGID.flex PCBs with two copper layers on flexible polyimide material, externally located. Application in accordance with IPC 2223 Use A: Flex-to-install, UL marking according UL94 and UL796F possible.


Examples:

Тор-Lаунг		
	70	
	-11-	
Doton-Lajer		

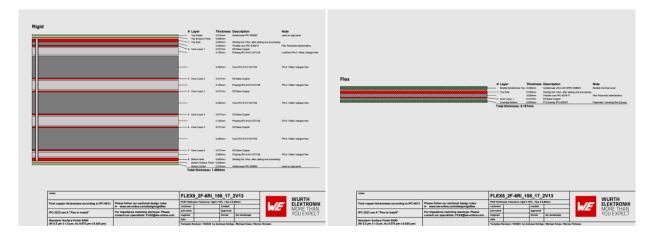
2F-1Ri: 3-layers

Nomenclature: Ri = Rigid, F = Flex

Basic instructions

2F-4Ri: 6-layers

- Please comply with general standards, such as IPC or IEC
- Please refer to the valuable hints and tips in our RIGID.flex Design Guide at <u>www.we-online.com/flex</u>.
- Please refer to our BASIC Design Rules for rules on conductor widths, spacings, via and pad sizes as well as solder mask at <u>www.we-online.com/basic</u>.
- Filling of PTHs (plated through holes): Do not use open holes in solder pads! Keep at least 400 µm distance from solder pads to holes to be plugged on both sides (Via plugging, IPC-4761 type III). For vias according to IPC-4761 type VII (filled and capped) please consult us for allowed design rules (conductor spacing)!
- Lift-off areas <u>attention</u>: NO copper layout below the flex and NO vias permitted in these areas!
- Flexible and rigid-flexible circuit boards must be dried before they are assembled. Further information about this is available at <u>www.we-online.com/dryingprocess</u>.
- Copper removal is required in ground or reference layers for drying.
 - Recommendation: Copper openings 0.3 mm per 1 mm length of copper.
- Flex-to-install bending radius: Installation Use A in accordance with IPC-2223 up to 90° bending angle:
 - 2 copper layers: 10 x total thickness (IPC-2223 section 5.2.3.3)
 - For use in more demanding conditions, please contact us.
- We will be happy to create the optimal delivery panel for you (best price!).



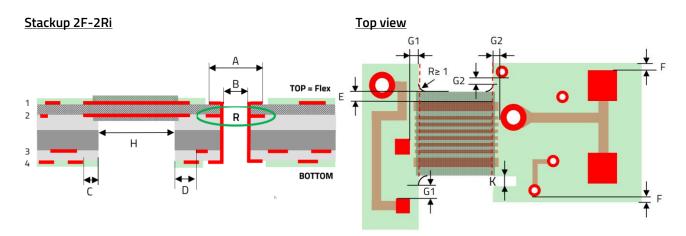
Material specifications

Material	Standard	Spec.	Description	Application	
		sheet			
Flexible base	IPC-4202	11	Polyimide adhesive less	Standard	
material					
Rigid base material	IPC-4101	128	FR4.1 Tg 150°C, filled;	Standard for RIGID.flex	
(cores, prepregs)			low-halogen, low CTE(z)		
LowFlow Prepreg	IPC-4101	128	FR4.1 Tg 150°C	Standard	
Soldermask	IPC-SM840		green, photosensitive	Standard lacquer in the rigid	
				areas	
Flexible solder mask	JIS C 5012/		green	Partially in the flex area or	
	IPC-SM840			over the entire area of the	
				flex side	
Coverlay	IPC-4203	1/2	Polyimide coverlay film,	Standard covering of flexible	
	JPCA-DG04		acrylic or epoxy glue	area on layer 2, optional in	
				place of flex solder mask on	
				top layer(surcharge)	

Standard Stackups

The standard stackups you will find under <u>www.we-online.com/flex</u>.

<u>Combination with microvia technique and buried via technique is possible:</u> See WE HDI Microvia Design Guide.


- <u>Flex side:</u> Microvias through Polyimide core outside the bending area.
- <u>Buried vias</u> after consultation by modification of the stackup (additional costs due to additional multilayer process). Buried Vias starting on layer 2 are generally not possible with this stack-up approach! Please contact us, we will find a solution for your needs: <u>flex@we-online.com</u>.

Standard design

- 1. Flexible foil out of Polyimide 50 µm thick, adhesive less, ED copper on both sides
- 2. PCB total thickness 0.8 mm to 1.55 mm
- 3. Copper layer thickness on inner layers 18 µm, outer layers 12 µm + plated copper
- 4. Low-Flow Prepreg between flexible and rigid materials
- 5. Flexible area partially covered by Coverlay film the on layer 2
- 6. Flexible soldermask green in bending area on TOP layer or on entire flex side
- 7. Bottom (not flex side) or optional all rigid areas with standard solder resist green
- 8. Standard PTH (Plated Through Holes)
- 9. Smallest milling diameter 1.6 mm
- 10. Solderable surface ENIG
- 11. Packaged in ESD shrink wrap

Symbol	Description	Technical	Advanced	
	Description	Standard	requirements	
	Line widths and spacings	see WE BASIC Design Rules!		
А	Minimum via pad diameter →For all Pad-connections Teardrops are recommended!	see WE BASIC Design Rules!		
В	Final diameter of PTH	see WE BASIC Design Rules!		
R	ightarrow NFP: Non functional / non-used pads do NOT remove!!			
С	Spacing, Cu – outer layer to flex-rigid transition (bottom)	≥300 µm		
D	Spacing, Cu – inner layer to flex-rigid transition	≥500 µm		
E	Distance of conductor to the flexible contour	≥300 µm		
F	Spacing, exposed Cu – outside of flex-rigid transition	≥300 µm		
G1	Flexible lacquer: Spacing, pad / exposed Cu to flex-rigid transition (top)	≥800 µm	≥400 µm	
G1	PI-Coverlay: Spacing to flex-rigid transition, pad / exposed Cu (top)	≥1500 µm	≥1000 µm	
G1	PI-Coverlay with UL marking: Spacing for pad / exposed Cu (top)	≥2000 µm	≥1500 µm	
G2	Spacing drillpad to flex-rigid transition: Cu inner layers 18µm	≥1500 µm	≥1000 µm	
G2	Spacing drillpad to flex-rigid transition: Cu inner layers 35µm or with UL marking	≥2000 µm ≥1500 µm		
G2	For your information: Recommendation in IPC-2223D 5.2.2.3:	3.18 mm+½ pad diameter		
Н	Length of the flex area	≥5 mm	≥2.5 mm	
К	Minimum recess width directly at the flex area	1.6 mm	1.0 mm	
"K"	Outline manufacturing of flex area: No scoring permitted!			
"ZIF"	ZIF contacts thickness tolerance (material of stiffener)	± 0.05 mm (FR4)	± 0.03 mm (PI) special stackup	
-	Combination with microvia and buried via technique is possible	see HDI Microvia	Design Guide!	

Further specifications available on request, please contact us: <u>flex@we-online.com</u>