

<u>CONNECTOR TEMPERATURE RISE AND</u> <u>DERATING</u>

Goetz Schattmann FAE eiCan

WURTH ELEKTRONIK MORE THAN YOU EXPECT

WE eiCan

Current design for connectors

- Consequences of a too high temperature
- Temperature rise rule
- How heat is dissipated
- Heat in a cable
- Some tricks
- Derating curve
- Inrush current
- Connector horror show
- Finally what to remember

Basic connector use

ENVIRONMENTAL OPERATING TEMPERATURE: -40 UP TO 105°C COMPLIANCE: LEAD FREE AND ROHS

ELECTRICAL	cULus
CURRENT RATING:	20 A
WORKING VOLTAGE:	300 VAC
WITHSTANDING VOLTAGE:	1.6 KV
CONTACT RESISTANCE:	20 mOhm max

Electricity and temperature rise

How working current is designed in WE

- Current design for connectors
- Consequences of a too high temperature
- Temperature rise rule
- How heat is dissipated
- Heat in a cable
- Some tricks
- Derating curve
- Inrush current
- Connector horror show
- Finally what to remember

Temperature increase and connectors

Consequences of high temperature:

Naturally increase contact resistance

Increase corrosion speed and consequently increase contact resistance > Corrosion speed ~ doubles each 10°C

Degradate solder joint

□ Accelerate plastic aging

Metal relaxation

Temperature increase and connectors

Consequences of high temperature:

Electronic devices lifespan

Image of lifespan reduction coeficient vs temperature **Arrhenius equation**

- Current design for connectors
- Consequences of a too high temperature
- Temperature rise rule
- How heat is dissipated
- Heat in a cable
- Some tricks
- Derating curve
- Inrush current
- Connector horror show
- Finally what to remember

Electricity and temperature rise

	,			~ • •
Р	=	R	•	I^2

loule's law

$$\Delta T = k \cdot R \cdot I^2$$

- P (W): power dissipated by the resistor
- R (Ω)
- I (A)
- ΔT (K): data given usually in Kelvin
- k: constant defined by resistance material and environnement

Temperature rise is proportional to the square of the current

Theorical calculation

Example:

• Measurment:
$$I_1 = 15A$$
 gives $\Delta T_1 \approx 15K$

$$\Delta T = k \cdot R \cdot I^2$$

• At
$$I_2 = 30A \rightarrow \Delta T2 \approx \frac{30^2}{15^2} \cdot 15 \approx 60K$$

$$\frac{\Delta T_1}{\Delta T_2} \approx \frac{I_1^2}{I_2^2}$$

Theorical calculation

<u>Theorical calculation: is it really true ?</u>

Temperature rise test done at 20A

ΔT calculation vs measurment

- Current design for connectors
- Consequences of a too high temperature
- Temperature rise rule
- How heat is dissipated
- Heat in a cable
- Some tricks
- Derating curve
- Inrush current
- Connector horror show
- Finally what to remember

Time

w/F

What to remember ?

An electrical system <u>must</u> have thermal exchanges
 Under current, temperature should stabilized after 10/15mn

► <u>Radiation</u>:

- Plastic is better than metal
- Rough metal surface is better than polished

><u>Convection</u>: increase surface in contact with air

►<u>Conduction</u>:

- Copper is the best metal for conduction dissipation
- Increase section optimize exchange

- Current design for connectors
- Consequences of a too high temperature
- Temperature rise rule
- How heat is dissipated
- Heat in a cable
- Some tricks
- Derating curve
- Inrush current
- Connector horror show
- Finally what to remember

Wire size (AWG)	Current (A)	ΔT (K)
20	5	5
18	7	6
16	10	7
14	15	10
12	20	11
10	30	16
8	50	20
6	65	20

All pictures: WE eiCan

.

Wire heat dissipation: the right length?

<u>Test:</u>

ΔT 12AWG-20A TBL plug 3 poles 7,62 Different wire length 2 thermocouples in 2 TBL clamps

All pictures: WE eiCan

Wire heat dissipation: the right length ?

Wire heat dissipation: the right length ?

All pictures: WE eiCan

- Current design for connectors
- Consequences of a too high temperature
- Temperature rise rule
- How heat is dissipated
- Heat in a cable
- Some tricks
- Derating curve
- Inrush current
- Connector horror show
- Finally what to remember

ΔT=30K ok, but only with 3 poles ?

<u>Test:</u>

Working current is tested at 3 poles Should we decrease current with more ?

¹²AWG – 20A – 10cm

This is what you expect?

TBL **AT** versus nb of poles

ΔT=30K ok but only with 3 poles ?

<u>Test:</u>

Working current is tested at 3 poles Should we decrease current with more ?

¹²AWG – 20A – 10cm

Expectation vs reality

TBL ΔT versus nb of poles

ΔT=30K ok but only with 3 poles ?

<u>Test:</u>

Working current is tested at 3 poles Should we decrease current with more ?

¹²AWG – 20A – 10cm

Reality

ΔT versus nb of poles

All pictures: WE eiCan

ΔT=30K ok but only with 3 poles ?

12AWG – 20A – 10cm

All pictures: WE eiCan

<u>Cable loop – additional heat ?</u>

Test: Cable loop influence 6² 41A

Temperature rise vs wire loops

Test:

TBL plug 3 poles 7,62 Initial 12AWG - 20A 2 thermocouples in 2 TBL clamps + 1 for box ambient air Wire length 10cm

Thermal behaviour of a connector inside of a closed box

All pictures: WE eiCan

Test: Same with closed box with holes

WE eiCan

WE eiCan

Test:

Same with closed box with holes and external wires

Thermal behaviour of a connector inside of a closed box

WE eiCan

Test:

- Closed box
- Internal wires
- No holes
- 15A instead of 20A

Thermal behaviour of a connector inside of a closed box

Test:

How to naturally cool down a PCB?

Test:

- PCB redcube
- 100A
- Horizontal and vertical PCB

max **76.1** °C Horizontal PCB

25.0

\$FLIR

And now with a fan?

Test:

- PCB redcube
- 100A
- Horizontal and vertical PCB With fan

And now with a fan?

- Current design for connectors
- Consequences of a too high temperature
- Temperature rise rule
- How heat is dissipated
- Heat in a cable
- Some tricks
- Derating curve
- Inrush current
- Connector horror show
- Finally what to remember

Derating curve UL

How to decrease current when ambient temperature increase:

- Maximum connector temperature
- **ΔT** ≤ **30K**
- ΔT proportional to I²

OPERATING TEMPERATURE: -40 UP TO 105°C COMPLIANCE: LEAD FREE AND ROHS ELECTRICAL CURRENT RATING: 7 A

ENVIRONMENTAL

WORKING VOLTAGE: 250 VÁC INSULATOR RESISTANCE: >1000 MOHM DIELECTRIC WITHSTANDING VOLTAGE: 1500 VAC/MN CONTACT RESISTANCE: 20 mOHM MAX

Derating curve VDE

How to decrease current when ambient temperature increase:

- Maximum connector temperature
 - ΔT ≤ 45K
- ΔT proportional to I²

_	
	OPERATING TEMPERATURE: -30°C UP TO +120°C
	COMPLIANCE: LEAD EDEE AND DOLLS
	COMPLIANCE. LEAD FREE AND ROHS

ELECTRICAL UI	L	VDE
CURRENT RATING: 16	6A	24A
WORKING VOLTAGE: 30)0VAC	750
WITHSTANDING VOLTAGE: 1,	6KV	3KV
CONTACT RESISTANCE: 20 mQ MA	٩X	

- Current design for connectors
- Consequences of a too high temperature
- Temperature rise rule
- How heat is dissipated
- Heat in a cable
- Some tricks
- Derating curve
- Inrush current
- Connector horror show
- Finally what to remember

THE GOOD QUESTION

Inrush Current

		ertures from pixabay		man -	
Pitch 2,54mm €	C	Eurrent x 6 auring short time a	?	Pitch 10,16m €€€	im
ELECTRICAL CURRENT RATING: WORKING VOLTAGE: WITHSTANDING VOLTAGE: CONTACT RESISTANCE:	cULus 6 A 150 VAC 1.3 KV 20 mOhm MA	x	C	ELECTRICAL CURRENT RATING: WORKING VOLTAGE: WITHSTANDING VOLTAGE: CONTACT RESISTANCE:	CULUS 57A 300VAC 1.6KV 20 mOhm max

APPLICATION ISSUE

Pictures from WE

Pictures from pixabay.com

REAL TEST

Inrush Current Measurement - ΔT vs time

final inrush current test results

Pictures from WE

INRUSH CURRENT CURVES

applicable inrush current for eiCan connectors. Different scales

DERATING CURVE WITHOUT INRUSH CURRENT

UL Derating Curves for different Operating Temperatures

Base principle: always **△T ≤ 30K** Connector internal temperature **<** operating temperature

> Security margin Stable current ≤ 15K and Inrush current ≤ 15K

DERATING CURVE WITH INRUSH CURRENT

UL Derating Curves for different Operating Temperatures

FINAL CURVES

Datasheet is guaranted by WE Always do a test to check temperature of your system

UL derating curves: working current & inrush current Inrush peak current ratio with working current, applicable for 80% terminal blocks 70% 18 Applicable current 1 1 60% Inrush current peak ratio with working current N ١ 16 50% 1 1 14 40% 1 1 12 30% ł 10 ۱ 20% 8 1 10% 6 1 0% 4 60 °C 120 °(0°C 20 °C 40 °C 80 °C 100 °C 2 Operating temperature 0 . 0 s 2 s 4 s 6 s 8 s 10 s 12 s 14 s 16 s 18 s 20 s Time

UL derating curves for continuous and inrush current a. different operating temperatures. For WE terminal blocks only

<u>ANE015</u>

104

- Current design for connectors
- Consequences of a too high temperature
- Temperature rise rule
- How heat is dissipated
- Heat in a cable
- Some tricks
- Derating curve
- Inrush current
- Connector horror show
- Finally what to remember

Connector horror show

What happens when you increase current ? MPC4: 9A - max +105°C

108 |

Connector horror show

What happens when you increase current ? MPC3: 5A - max +105°C

All pictures: WE eiCan

Connector horror show

What happens when you increase current ? MPC3: 5A - max +105°C

110 |

- Current design for connectors
- Consequences of a too high temperature
- Temperature rise rule
- How heat is dissipated
- Heat in a cable
- Some tricks
- Derating curve
- Inrush current
- Connector horror show
- Finally what to remember

