CM/DM NOISE SEPARATION USING OSCILLOSCOPES FOR MORE EFFICIENT EMC FILTER DESIGN

ROHDE&SCHWARZ

Make ideas real

MOTIVATION

- A Conducted Emission Compliance Test As Part Of The EMC-Directive Is An Essential Task To Perform For Power Converter Designs >> EMI Input Filter
- ► The Design And Validation Of An EMI Input Filter Is Typically An Iterative Task During The Design
- Conducted Emission Tests Are Often Performed As Pre-Compliance Test To Obtain An Early Feedback

- For An Effective Iterative Filter Design, It Is Essential To Know Details Of The Total Noise Spectrum
 - Frequency And Magnitudes Are Not Sufficient
 - Understanding Of The Propagation Method Of The Noise Source (Common or Differential Mode)

DO YOU REMEMBER?

Radio Frequency Interference

WHAT IS EMI?

- ► EMI = ElectroMagnetic Interference
 - Unintended / undesired radio frequency emissions from a device (equipment under test)
- ► These emissions can create problems for other electric or electronic devices
- ► Regulations and standards specify acceptable emission levels over various frequency ranges

AGGRESSOR AND VICTIM

ASPECTS OF AN EMI PROBLEM

COMMERCIAL EMC PROBLEMS

an SAirLines

TWA 800, 1996 230 people on board died in the crash

Swissair 111, 1998 229 people on board died in the crash

Schematic chart of the flight paths of TWA 800 and Swissair 111 along the Bette route, based on information provided by the FAA. The World Aeronautical Chart, 27th edition, 1997, issued by the Department of Commerce, identifies such areas as those marked W-102 through W-107 as follows: "Warning: National Defense Operating Areas operations hazardous to the flight of aircraft conducted within these areas."

PUSHING THE LIMIT OF EMI

More powerful computing power

Faster and higher bandwidth communication

Complex technology integration

Power consumption and longevity

ELECTROMAGNETIC COMPATIBILITY

- Capability of a device or system to operate in an electromagnetic environment and not disturb or be disturbed by other devices
- Required to conform to industry specific standards

EMC = EMI + EMS

ELECTROMAGNETIC COMPLIANCE

SYSTEM CONFIGURATION

COMPLIANCE RADIATED EMISSION TEST

COMPLIANCE CONDUCTED EMISSION TEST

STAGES OF EMC TESTING

Pre-Compliance Setup

Circuit

Pre-Production

WHICH TOOLS TO USE?

FROM COMPLIANCE TO EMI DEBUGGING

EMI Receiver

- 6 dB Filters
- Pre-selector available
- **Highest selectivity**
- CISPR compliant de*
- Demodulation of
- Time domair time to a

Jsible

Jes sweep

Spectrum Analyzer 3 dB Filters 3 dB Filter High selectivity High sensitivity Analysis on wide fr inge possible (todav ∠ internal Mask test ir analysis BW Gated F Demod[,] anals possible Μυ

Oscilloscope

- Analysis of whole freque
- Measures down to [¬]
- Trigger capabili*
- and time domain
 - **Jherent** receiver

.al separation

Source of interference

kind of interference	dominant source	frequency range	radiated or conducted
low frequency interferences	fundamental wave and harmonics of the controller switching frequency	10kHz to 40MHz	conducted
broadband interferences	dl/dt and dU/dt of the FET (silicon) switching edges and parasitic resonant circuits	40MHz to 200MHz	conducted and radiated
high frequency interferences	reverse recovery of the schottky diode	over 200MHz	radiated

Date 28.01.2021 | Mohamed AlAlami | Public | EMI & Filter Design Webinar_R&S May 2021

© All rights reserved by Wurth Electronics, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

CONDUCTED EMISSION

Differential Mode

Rohde & Schwarz

Rohde & Schwarz

LIMITATION OF STANDARD CE-MEASUREMENT SETUP

- ► The Standard Measurement Setup Provides Only A Combination Of Different Noise Sources.
- ► The Setup In Combination With EMI-Receivers Are Not Suitable To Debug.

CONDUCTED EMISSION MEASUREMENT

DC-DC Isolated Flyback Stage (Vin = 24V, Vout = 5V, Iout = 2.5A, Fsw = 300kHz)

11:39:46 09.02.2022

11:39:14 09.02.2022

COMMON AND DIFFERENTIAL MODE THEORY

SOFTWARE SOLUTION

- ► What Is Required To Implement This SW Solution
 - Multiple FFT Is Required
 - Low Noise Frontend
 - Powerful Hardware
 - 2 Channels
 - >> An Oscilloscope Can Offer These Capabilities

Pros

- Time / Freq Domain Correlation
- No Extra Hardware Is Required

► Cons

- Noise Level (~0dBuV)

CONDUCTED EMISSIONS SETUP

DM FILTER EFFECT (X-CAPACITOR)

DMilfedenabled

CM-MODE FILTER EFFECT (Y-CAPACITOR)

OMfiffetedenabled

CM/DM-FILTER APPLIED

© Milse Det d Filter @ 50 mv X/D/D/√

HARDWARE SOLUTION

CONCLUSION

- ► The oscilloscope is A great tool to debug EMI and optimize filter designs
- ► The setup is relatively simple but the user needs to consider some impacts:
 - Vertical scale noise level
 - Ground plane to close the cm-path
 - Sampling rate should be high enough >> nyquist criterium

Find further information:

EMC Pre-Compliance and Compliance Solutions

EMI Debugging with Oscilloscopes

THANK YOU

DEMO SETUP

BASIC EMI CONDUCTED EMISSIONS SETUP

FPL1000

CHOOSE PREFERRED SCOPE

RTM3000

MX0 4

RT06

Differential Mode

Rohde & Schwarz

Rohde & Schwarz

EMI FILTER CIRCUIT – CM CHOKE

Differential Mode

COMPONENT FILTER RESPONSE

Rohde & Schwarz