DIGITAL WE DAYS 2023

BENEFITS OF GAN IN QR FLYBACK

Partnered with STMicroelectronics

WURTH ELEKTRONIK MORE THAN YOU EXPECT

Today's speakers

PRESENTATION Ester Spitale Technical Marketing Manager MODERATION Silas Zorn Marketing Department

Digital We Days | October 18

Information about the Webinar

You are muted during the webinar.

However, you can ask us questions using the chat function.

Duration of the presentation30 MinQ&A:10 – 15 Min

Any questions? No problem! Email us

digital-we-days@we-online.com

Please help us to optimize our webinars!

We are looking forward to your feedback.

On our channel And on Würth Elektronik Group Digital WE Days 2023 YouTube Playlist

Agenda

1 GaN technology in the market

- 2 GaN characteristics and benefits of GaN in power conversion
- 3 GaN-based quasi-resonant flyback & comparison with GaN-based ACF
- 4 ST's GaN system-in-package overview

5 Conclusions

GaN technology in the market

life.augmented

Silicon & wide-bandgap Power devices positioning

Higher power is achieved

Wide-bandgap trends vs technology adoption

- In consumer, GaN crossed the chasm in 2020-2021 due to rapid growth in fast chargers, and is now being deployed in other AC/DC applications.
- System-in-package with embedded drivers/controllers will contribute to adoption due to simplicity of integration.

GaN market outlook

GaN characteristics and benefits of GaN in power conversion

Specific R_{DS-ON}: GaN vs. Si

Property	Si	GaN
Eg (eV) – band gap	1.1	3.39
Ec (MV/cm) – critical electric field	0.3	3.33
ε _r – dielectric constant	11.9	9
$\mu_n (cm^2/Vs)$ – electron mobility	1350	1700

$$BFoM\Big|_{GaN} \gg BFoM\Big|_{Si}$$

• GaN offers lower specific Ron vs. breakdown voltage limit

 \rightarrow the technology allows to achieve lower Ron * cm2

GaN transistor is typically 4 to 10 times smaller than equivalent MOSFET*

Output capacitance stored energy (*)

$$P_{Coss} = E_{OSS} \cdot f_{SW}$$

 During the switching, energy of output capacitance is being dissipated to the heat

✓ GaN transistor has much lower Eoss than equivalent Si MOSFETs

Benefits:

- ✓ Lower switching losses
- ✓ High switching frequency permitted
- ✓ High system's efficiency
- Higher power density compared to silicon-based transistors

Q_{RR} comparison

GaN transistors have zero reverse recovery charge → less losses in hard switching

* RDS(on)max at 25°C 13

Usage of GaN in power conversion most common topologies

Usage of GaN in power conversion most common topologies

GaN-based quasi-resonant flyback & Comparison with GaN-based ACF

Commonly used topologies up to 100W

QR Flyback converter

Main ICs losses in a traditional flyback converter

Single switch flyback with GaN: VIPerGaN50 eval-boards

50W / 15V - QR flyback

45W / USB PD - QR flyback

USB Type-C® output On daughter board

Isolated QR flyback converter with adaptive synchronous rectification

	115 V _{AC}	230 V _{AC}	
No load cons.	49 mW	60 mW	• V _{IN} = 90VAC ~ 265VAC
Aver. Eff	90.5%	90.1%	• V _{OUT} = +15V
Peak Eff.	91.1%	92.2%	• I _{OUT} = 3.3A
Eff.@ 10% load	88.4%	84.6%	• P _{OUT_tot} = 50W
			• $T_{AMBmax} = 60^{\circ}C$

VIPerGaN50 PWM controller with 650V GaN

45W USB Type-C® Power Delivery 3.0 charger based on VIPERGAN50, SRK1001, and STUSB4761

	115 V _{AC}	230 V _{AC}	• V _{IN} = 90V _{AC} ~ 265V _{AC}
No load cons.	< 30 mW		 PD output profile = 5V/9V/12V/15V @ 3 A
Max. Eff @full load	91.5%		• 20 V @ 2.25 A • P _{OUT max} = 45W
Eff.@ 10% load	88%	83%	• $T_{AMBmax} = 60^{\circ}C$

Single switch flyback with GaN: VIPerGaN65 USB-PD eval-board

EVLVIPGAN65PD – 65W USB-PD

> 93.5% peak efficiency

- Input Voltage: Universal AC from 90 VAC to 264 VAC with 47 Hz up to 63 Hz
- Support for 65W Type-C USB-PD (5V, 9V, 12V, 15V@3A 20V@3.25A)
- Efficiency: Meets CoC Tier 2 and DoE Level 6 efficiency requireme
- EMC Compliance: CISPR22B / EN55022B
- Power density: 22.1 W/in³ (unboxed) (69x20x35) mm

21

GaN-based Flyback vs. ACF Efficiency comparison

65W USB-PD application – 20V profile

✓ Gan-based QR flyback efficiency is comparable with ACF efficiency in most of operative conditions

 \checkmark ACF is better where switching losses have greater impact \rightarrow high input voltage/medium-light load

GaN-based Flyback vs. ACF Power density comparison

ACF has better power density due to the higher switching frequency operations

EVLONE65W	(ACF)
-----------	-------

Dimensions	(58 x 32 x 20) mm
Power density	28.7 W / in3
Switching frequency	Up to 250 kHz

life.auamente

EVLVIPGAN65PD (QR flyback)

Dimensions	(69 x 20 x 35) mm
Power density	22.1 W / in3
Switching frequency	Up to 140 kHz

23

HEMT GaN vs. MOSFET Device structure

The substrate of the GaN can be connected to GND to cool-down the chip

HEMT GaN vs. MOSFET Device structure

Mosfet-based chip

- The substrate of the GaN can be connected to GND to cool-down the chip
 - \checkmark Simplified package \rightarrow Lead-frame with single die pad required
 - $\checkmark\,$ Better package thermal performances \rightarrow Small package required and lower cost
 - $\checkmark\,$ Simplified PCB design $\,\rightarrow\,$ Dissipation pad can connect to a ground plane without affecting the EMI performances

Beneficial especially in topologies with LS switch only, like single switch flyback

ST's GaN system-in-package overview

GaN System-in-Package Overview

Innovative 600V and 650V GaN HEMT products

Up to 500W

VIPerGaN: offline flyback converter with 650V GaN HEMT switch

VIPerGaN quasi-resonant flyback topology

VIPerGaN family

- Integrated controller + 650V GaN HEMT
- R_{DSON} = 225 450 mΩ
- Advanced quasi-resonant flyback up to 100W
- Embedded HV start up generator
- Embedded protections
- Up to 240kHz switching frequency + jittering
- Less than 30mW standby power consumption
- Dynamic blanking time and adjustable valley sync
- Adaptive burst mode
- Easy entry to wide bandgap
- Minimized magnetic components
- Cost-effective BoM

life.guamente

Energy saving regulations

٢

AC

EVLVIPGAN65PD 65W USB PD Charger VIPerGaN PWM controller Synch. rectifier CV control

EVLVIPGAN50FL 50W Quasi-resonant

MasterGaN block diagram

The world first solution combining 600 V half-bridge driver with GaN HEMT: compact, robust & easy to design

GQFN 9x9 mm², pin-to-pin scalable

MasterGaN family

- 600V GaN HEMT
- Integrated half-bridge
- Integrated gate driver
- $R_{DSON} = 150 450 \text{ m}\Omega$
- Up to 500W
- Active-clamp flyback, LLC, LCC...
- High power density applications
- High efficiency
- Minimized size of magnetics

life.auamente

MasterGaN ACF and LLC topology

Conclusions

Conclusions

- Thanks to the lower E_{OSS}, QR flyback with GaN offers much higher efficiency than QR flyback with Silicon (typically 3-4% more) and the possibility to work at higher switching frequency, thus leading to much higher power density
- Efficiency of GaN-based QR flyback is similar to the one of GaN-based ACF in most operating conditions
- Active clamp flyback with GaN shows better efficiency at high input voltage and light-medium loads
- Active clamp flyback with GaN is the best solution when the highest power density is required (~30% higher than in QR flyback)
- GaN-based QR flyback represents the best trade-off performance cost

We are here for you now! Ask us directly via our chat or via E-Mail.

digital-we-days@we-online.com Ester.spitale@st.com

Thank you

© STMicroelectronics - All rights reserved. ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to <u>www.st.com/trademarks</u>. All other product or service names are the property of their respective owners.

