

BASIC DESIGN RULES

LAYOUT ACCORDING TO THE WE PARAMETERS AND THE PCB FITS

Andreas Schilpp

WURTH ELEKTRONIK MORE THAN YOU EXPECT

WELCOME TO THE ANNIVERSARY WEBINAR

10 Years of Würth Elektronik PCB Webinars

 The first webinar of your Top 3, originally offered in May 2013, is more current than ever: Recently, the Würth Elektronik BASIC Design Rules have been updated and restructured.

First webinar: 7 May 2013

■ EN: 47 Attendees

AGENDA

BASIC Design Rules: Layout according to the WE parameters and the PCB fits

- 1. BASIC and standard what is the difference?
- 2. Introduction of the new BASIC Design Rules
 - Scope of application
 - Contents
 - What is different?
- 3. Background information on the changes
 - Processes for copper structuring
 - Specification of copper thickness according to IPC
 - Aspect ratio for holes
- 4. Application of the BASIC Design Rules an example

Andreas SchilppTechnical Marketing

BASIC AND STANDARD – WHAT IS THE DIFFERENCE?

Definitions

STANDARD

- a <u>category</u> or <u>classification</u>
 - available from all plants
 - at a favorable standard price
 - other categories are
 - Advanced
 - (Leading Edge / State-of-the-Art)
- Standard / Advanced are available in all technologies

Further example for standards

- Standard Stackup
 - Material in stock, processes standardized
 - Standard processes ensure high quality and favorable prices with short delivery times

BASIC

- a <u>technology</u>. By <u>BASIC</u> technology we mean
 - single-sided,
 - double-sided and
 - multilayer printed circuit boards.

<u>TIP</u> USE STANDARDS

Use of standards:

- Standard material
- Material database of the PCB manufacturer (if available)
- Standard layer stackups also digital for import
- Standard design rules
- Standard delivery specification
- Standard packaging

<u>.</u> .

BASIC TECHNOLOGY – VARIANT MULTILAYER

The third generation in the history of PCBs is characterised by a multilayer structure, created by pressing copper foil, FR4 based copper-clad inner layer cores and pre-pregs.

The obvious additional effort and higher costs are offset by the many advantages:

More layers to route complex components, such as BGA packages

 Possibility to design power supply systems to improve power integrity and EMC.

 Possibility to design transmission lines with defined impedance to improve signal integrity

Multilayer PCBs make use of small through hole vias, also known as PTH (plated through holes), to connect layers

Contents

1	Scope of application	O:
2	Basic notes	0
3	BASIC base material	0
4	BASIC Standard Stackups	O
5	Copper structures, spacings	04
6	Drills, drill pads, annular rings, clearances	06
7	Edge plating	07
8	Solder mask	07
9	Peelable masking	Œ
10	Markings	

Scope of application

- The BASIC design parameters (copper structures or spacing, holes, solder mask, markings and solder surfaces) are basically valid for all PCB technologies, beyond BASIC for example also for
 - HDI Microvia,
 - Embedding technology or
 - Flex solutions.

Flyer

Flyer

Flyer

8 SOLDER MASK

Laquer residues in via holes

Follow-up error ENIG Surface

BASIC DESIGN RULES: LAYOUT ACCORDING TO THE WE PARAMETERS

Poll: Multiple choice with only one correct answer

What has the greatest influence on the minimum copper spacing (subtractive etching technique on inner layers)?

- Number of layers
- Thickness of the copper foil
- Thickness of the electroplated metallization
- Total thickness of copper foil and electroplated metallization
- Prepreg thickness

Flyer: What is new?

- a. The conductor spacing, more generally the "copper spacing", is crucial for the production of the copper structures. This affects all features such as tracetrace / trace-shape / shape-trace / shape-shape / trace-all pin pads / trace-all Via pads / trace-all non signal geometries / etc..
- b. For the design of the conductor width, criteria such as current carrying capacity, permissible tolerances and other specifications apply.
- c. In principle, the conductor width can also be larger or smaller than the conductor spacing.
 - Example: conductor width/conductor spacing (line/space) 80 μm / 120 μm is easier to manufacture than 100 μm / 100 μm .
- d. Minimum conductor widths:
 - i. The minimum allowed conductor width is 60 μm, for impedance defined structures smaller than 75 μm please consult us.
 - II. UL marking for conductor widths <4 mil is partly only possible according to UL-94. For conductor widths ≥ 4mil, marking according to UL-94 and UL-796 is possible. We ask for your consultation.

5 COPPER STRUCTURES, SPACINGS

Feature to Feature Spacing

BASICS: COPPER STRUCTURING

Inner layers: Imaging positive + etching subtractive

CUSTOMER DATA

RESIST

BASE COPPER

BASE MATERIAL

Flyer: What is new?

5 COPPER STRUCTURES, SPACINGS

Table for inner layers

Inner layers - conductor spacing						
Starting foil	Minimum copper thickness ³		Minimum conductor	Minimum conductor	Minimum possible	
thickness	IPC-class 1, 2, 3		spacing Standard	spacing Advanced	line width	
17,1 μm [1/2 oz.]	11,4 µm		100 μm	75 µm	60 µm	
34,3 µm [1 oz.]	24,9 µm		120 µm	100 µm	60 µm	
68,6 µm [2 oz.]	55,7 μm		180 µm	150 µm	125 µm	
102,9 μm [3 oz.]	86,6 µm		250 µm	225 μm	175 µm	
3) IPC-6012E-EN Table 3-14: Internal Layer Foil Thickness after Processing						

BASICS: COPPER STRUCTURING

Outer layers: Imaging negative + copper deposition selective + etching base copper

CUSTOMER DATA

TIN RESIST

PHOTORESIST

COPPER PLATING

BASE COPPER

BASE MATERIAL

Flyer: What is new?

Table for outer layers

Outer layers – conductor spacing						
Starting foil	Minimum copper thickness ¹		Minimum conductor	Minimum conductor	Minimum possible	
thickness	IPC-class 1, 2	IPC-class 3	spacing Standard	spacing Advanced	line width	
8,5 µm [1/4 oz.] ²	26,2 μm	31,2 µm	100 µm	75 µm	60 µm	
12 μm [3/8 oz.] ²	29,3 μm	34,3 µm	100 µm	80 µm	60 µm	
17,1 µm [1/2 oz.]	33,4 µm	38,4 µm	120 µm	100 μm	60 µm	
34,3 µm [1 oz.]	47,9 μm	52,9 μm	180 µm	160 µm	120 µm	
68,6 µm [2 oz.]	78,7 μm	83,7 μm	275 μm	225 μm	125 μm	
102,9 μm [3 oz.]	108,6 μm	113,6 μm	390 µm	320 µm	150 µm	
1) IPC-6012E-EN Table 3-15: External Conductior Thickness after Plating						
2) Extra cost: No standard copper foil						

Why are annular rings needed around via holes?

- Relationship between via pad size, registration and drill diameter
 - Annular ring specifications of IPC classes (see IPC-2221)
 - Influence of the drill tool: deflection
 - Influence of the machine
 - Layout-dependent shrinkage/expansion values: Offset of layers relative to each other
- Ideal versus real

Important for the drill diameter: Aspect ratio - next slide

Aspect Ratio

- Ratio drill-diameter b drill depth a
- PTH & BV: max. 1:8
- Important for a complete and even copper build-up in the barrel.

DRILLS, DRILL PADS, ANNULAR RINGS, CLEARANCES

Table

Plated Through Holes						
Pad size	Remark	Aspect Ratio ¹	Drill tool diameter	Finished hole diameter	Tolerance (Standard)	Copper clearance plane on inner layer without Pad
0,60 mm	Standard Max. ca. 12 layers Max. ca. 1,80 mm PCB thickness	8:1	0,35 mm	0,25 mm	+0,1/-0,05 mm	≥ 0,80 mm
0,55 mm			0,30 mm	0,20 mm		≥ 0,75 mm
0,50 mm (Cu max. 35 μm)			0,25 mm	0,15 mm		≥ 0,70 mm
0,45 mm (Cu max. 35 μm)	For less complex Layer stackups		0,25 mm (0,20 mm)	0,15 mm		≥ 0,70 mm
1) Aspect Ratio" for drill holes: Ratio of drill hole length or depth to drill hole tool diameter.						

¹⁾ Aspect Ratio" for drill holes: Ratio of drill hole length or depth to drill hole tool diameter. For further information, see technical delivery specification chapter 3.7.1.

Why do you need copper releases in ground inner layers without a pad?

vily do you need copper releases in ground inner layers without a pad

Non-used / non-functional pads:

- Pad removal does not add space on inner layers because tolerances, offset and deflection are real and permissible.
- A design rule check must be performed before pad removal!
- The total clearance is pad size plus minimum copper clearance!

Annular ring

ATTENTION with RIGID.flex:
 <u>Do NOT remove</u> non-used /
 non-functional via pads on flex layers for reliability reasons!

BASIC DESIGN RULES: LAYOUT ACCORDING TO THE WE PARAMETERS

Usage of table for UFBGA 7X7X0.6 169L P 0.5mm

TOP Layer 2 Layer 3 Layer 4

BASIC DESIGN RULES: LAYOUT ACCORDING TO THE WE PARAMETERS

Poll: Multiple choice with only one correct answer

Please rate the BASIC Design Rules: How many points on a scale of 1 to 10 do you give the document?

- 1 to 2 points (unusable)
- 3 to 4 points (incomplete and incorrect)
- 5 to 6 points (ok, but incomplete)
- 7 to 8 points (good, helpful, understandable)
- 9 to 10 points (almost perfect, I use it often)

NOTES

- → Participants with a rating of less than 5 points I will contact in writing after the webinar (this is not a threat, but a partnership offer!)
- → Feel free to write me errors, additions and optimizations in the question field

SUMMARY

New BASIC Design Rules

- BASIC is a technology
- Standard is a category or classification
- Conductor spacing is important for PCB manufacture
- Conductor width and conductor spacing should be considered independently of each other. Different values should be considered at least locally.
- Annular rings around via holes are still necessary
- Non-used pad removal does not save space
- Würth Elektronik Webinars more than you expect!

