

IMPEDANCE SPECTRA OF DIFFERENT CAPACITOR TECHNOLOGIES

Dr. René Kalbitz – Power Management Capacitors and Resistors Partnered with Digi-Key Electronics

WURTH ELEKTRONIK MORE THAN YOU EXPECT

MANIFOLD OF CAPACITOR TECHNOLOGIES

https://en.wikipedia.org/wiki/Polymer_capacitor

https://en.wikipedia.org/wiki/Supercapacitor

SPECTRA OF CAPACITORS

So many capacitors families, so many spectra ...

MANIFOLD OF EQUIVALENT CIRCUITS / MODELS

 C_{+}

 R_{f+}

 τ_{n+1}

 τ_{n+2}

 τ_{n+3}

 τ_{n+4}

 τ_{n+5}

 τ_{n+1}

Debye-like models

- Supercapacitors
- E-Caps

 R_{Leak}

Electrode interface models

• Supercapacitors (EDLC)

 R_{f}

- E-Caps
- Polymer Caps

 R_{s}

- MLCCs
- Film Capacitors
- E-Caps
- Polymer Caps

Any many more...

Fletcher, S., Black, V.J. & Kirkpatrick, I. A universal equivalent circuit for carbon-based supercapacitors. J Solid State Electrochem 18, 1377–1387 (2014). https://doi.org/10.1007/s10008-013-2328-4 Modeling of metallized polymer films capacitor's impedance, Maawad Makdessi et al., IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society (2012)

ONE EQUIVALENT CIRCUIT FOR ALL CAPACITORS

OUTLINE

Introduction of model

Interpretation of impedance and capacitance spectra

calculated and measured

- High capacitive
- Low capacitive
- Accuracy and ESR

EQUIVALENT CIRCUIT OF CAPACITORS

Capacitor sign used in your layout:

Capacitor as it actually is:

A capacitor consists of:

- a pure capacitor
- resistors
- and inductor

CAPACITANCE SPECTRA

EQUIVALENT CIRCUIT OF CAPACITORS

EQUIVALENT CIRCUIT OF CAPACITORS

Supercapacitor 50F

 $C_S(0.01 Hz) = 51 F$ $R_{ESR}(f_{RC} = 0.2 Hz) = 0.012 \Omega$ $R_{ESR}(f_{LC} = 160 Hz) = 0.007 \Omega$

IMPEDANCE AND CAPACITANCE SPECTRA

IMPEDANCE SPECTRA OF DIFFERENT CAPACITOR TECHNOLOGIES - PARTNERED WITH DIGIKEY ELECTRONICS WEBINAR | REKA | 11.07.2023 16

Film Capacitors

 C_{S}

⇐ C

 f_{LC}

10⁶

f [Hz]

f_{RC}

10⁷

10⁸

MEASUREMENT ACCURACY Film Capacitors ▲*Im* $\omega \times L_{ESL}$ $\tan \delta \rightarrow 0$ **R**_{ESR} Cannot be resolved ! \overrightarrow{Re} 0 φ <u>π</u> 2 δ $Im(\hat{Z})$ 1 Loss Angle, *δ* [Radiant] \hat{Z} $\boldsymbol{\omega} \times \boldsymbol{C}$ <u>π</u> 4 0 $Re(\hat{Z})$ f_{Leak} f_{LC} .<u>π</u> 4 $R_{ESR} = \tan \delta \times \left| \operatorname{Im}(\widehat{Z}) \right|$ $-\frac{\pi}{2}$ $\delta \geq \delta_{arDelta}$ 10⁻² 10² 10⁶ 10^{-4} 10⁰ 10⁴ 10⁸ 10¹⁰ accuracy limit f [Hz]

IMPEDANCE AND CAPACITANCE SPECTRA E-Caps

IMPEDANCE AND CAPACITANCE SPECTRA

If $|Im(\hat{Z})|$ increases, so does R_{ESR} , it seams!

Does this mean the R_{ESR} is actually increasing?

Hard to say, since...

 $an \delta$ cannot be measured accurately.

*R*_{ESR} is probably **largely overestimated**!

CONCLUSION

Only one model sufficient: describes all important features of impedance spectra

- Loss angle resolution limits ESR measurements
 - Steep increase of ESR indicates resolution limit

Only trust ESR values at the minimum

Capacitance is extracted at low frequencies.

We are here for you now! Ask us directly via our chat or via E-Mail.

webinarteam@we-online.com

eicapHotline@we-online.com

BIOGRAPHY / CONTACT DETAILS

+4930 5480 702 114

Würth Elektronik eiSos

rene.kalbitz@we-online.com

Competence Center Berlin,

Volmerstraße 10, 12489 Berlin

René Kalbitz, Ph.D.

Product Manager, Supercapacitors eiCap / eiRis Capacitors and Resistors Division

Background:

- Experience in
 - application-oriented research
 - development of organic electronics,
 - polymer analysis
- Responsible for Supercapacitors

Dr. René Kalbitz studied physics at the University of Potsdam and at the University of Southampton (GB). After completing his diploma degree, he gained is PhD in the field of organic semiconductors and insulators at the University of Potsdam. He was able to gain further experience in the field of applied research at the Fraunhofer Institute for Applied Polymer Research. He has been employed at Würth Elektronik as a product manager for supercapacitors since 2018 and oversees research and development projects in the field of capacitors.

www.we-online.com

REPOSITORY

IMPEDANCE AND CAPACITANCE SPECTRA

EQUIVALENT CIRCUIT OF CAPACITORS

• $R_{\rm ESR} - C$:

 $f_{RC} = \frac{1}{2 \cdot \pi \cdot R_{ECD} \cdot C_{C}}$ • $L_{ESL} - C$ $f_{LC} = \frac{1}{2 \cdot \pi \cdot \sqrt{L_{ESL} \cdot C_S}}$ • $R_{\text{Leak}} - C$: $f_{Leak} = \frac{1}{2 \cdot \pi \cdot R_{Leak} \cdot C_s}$ • $R_{\rm ESR} - L$: $f_{RL} = \frac{R_{ESR}}{2\pi I_{RC}}$

below f_{RC} : Reactance X_C dominates $\rightarrow C_{\rm S}$ can be extracted

- at f_{LC} : Reactance X_L, X_C cancel out $\rightarrow R_{ESR}$ can be extracted
- below f_{Leak} : R_{Leak} dominates $\rightarrow R_{\text{Leak}}$ can be extracted above f_{RL} : Reactance X_L dominates

 $\rightarrow L_{\rm ESL}$ can be extracted

IMPEDANCE AND CAPACITANCE SPECTRA

 $C_{\rm S} = 4.7 \, \rm nF$

Parameter	Value	Value	Value	
f_e in kHz	450	10	1	
$\operatorname{Im}(\widehat{Z})$ in Ω	0.75	33.86	338.63	
${ m Re}ig(\widehat{Z}ig)$ in Ω	0.039	0.31	2.23	1.×10 ¹ Error
δ_Δ in °	0.30	0.30	0.30	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ an \delta$	0.052	0.009	0.007	\overline{G} 1.×10 ⁰
δ in °	2.967	0.525	0.377	$(N_{\odot}) = 0.5 \times 10^{\circ}$ $(N_{\odot}) = 0.25 \times 10^{\circ}$ 57 %
∆ in %	<u>10.1</u>	<u>57.2</u>	<u>79.5</u>	
0.25×10 ⁻				0.25×10^{-1}
$Re(Z) = R_{ESR} = \tan \delta \times Im(Z) $				10 ³ 10 ⁴ 10 ⁵ 10 ⁶ 10 ⁷ 10 ⁸ f [Hz]

